1887

Abstract

Summary: Genes encoding (1,3-1,4)--glucanase (AMY), (1,3-1,4)--glucanase (MAC), and a series of hybrid enzymes containing -terminal sequence segments of different length derived from AMY with the remaining C-terminal segment derived from MAC, were expressed in . The cells secreted active enzyme into the medium. While the quantity of -glycan linked to the different enzymes was similar, pronounced differences in thermotolerance were observed when the glycosylated enzymes were compared with the unglycosylated counterparts produced in Glycosylated AMY and hybrid enzyme H(A16-M), consisting of 16 N-terminal amino acids derived from AMY with the remaining C-terminal segment from MAC, exhibited a 7.5- and 1.6-fold increase in half-life at 70°C, pH 6.0. N-terminal sequencing established that only two out of three sites for potential N-glycosylation of H(A16-M) secreted from yeast were actually glycosylated. Removal of N-glycans by endoglycosidase H and peptide: -glycosidase F from H(A16-M) resulted in a 16-and 133-fold decrease of thermostability, demonstrating that -glycans are a major determinant for the resistance of this enzyme to thermal inactivation. Glycosylated MAC and hybrid enzymes H(A36-M), H(A 107-M) and H(A 152-M) had increased thermostability but hybrid enzyme H(A78-M) was less thermostable. -Glycosylation thus changes thermostability of (1,3-1,4)-α-glucanases with similar primary structure in a variable, so far unpredictable way.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-1-159
1994-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/1/mic-140-1-159.html?itemId=/content/journal/micro/10.1099/13500872-140-1-159&mimeType=html&fmt=ahah

References

  1. Becker D. M., Guarente L. Protocols for high-efficiency yeast transformation. In Chang D. C., Chassy B.M., Saunders J.A., Sowers A.E. Edited by Guide to Electroporation and Electrofusion San Diego: Academic Press; 1992 pp. 501–505
    [Google Scholar]
  2. Borriss R., Olsen O., Thomsen K.K., von Wettstein D. Hybrid Bacillus endo(l-3,l-4)-β-glucanases: construction of recombinant genes and molecular properties of the gene products. Carlsberg Res Commun 1989; 54:41–54
    [Google Scholar]
  3. Borriss R., Buettner K., Maentsaelae P. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases. Mol & Gen Genet 1990; 222:278–283
    [Google Scholar]
  4. Fágáin Ó. C., O’Kennedy R. Functionally-stabilized proteins - a review. Biotechnol Adv 1991; 9:351–409
    [Google Scholar]
  5. Golub E.I. ‘One minute’ transformation of competent . E. coli by plasmid DNA. Nucleic Acids Res 1988; 16:1641
    [Google Scholar]
  6. Grafl R., Lang K., Vogl H., Schmidt F.X. The mechanism of folding of pancreatic ribonucleases is independent of the presence of covalently linked carbohydrate. J Biol Chem 1987; 262:10624–10629
    [Google Scholar]
  7. Hernandez L.M., Olivero I., Alvarado E., Larriba G. 1992
  8. Oligosaccharide structure of the major exoglucanase secreted by Saccharomyces cerevisiae. Biochemistry 31:9823–9831
    [Google Scholar]
  9. Hill T.G., Wang P., Huston M.E., Wartchow T.G., Oehler L.M., Smith M.B., Bednarski M.D., Callstrom M.R. Carbohydrate protein conjugates (CPC): the design of new materials to stabilize enzymes. Tetrahedron Eett 1991; 32:6823–6826
    [Google Scholar]
  10. Hitzeman R.A., Chen C.Y., Dowbenko D.J., Renz M.E., Liu C., Pai R., Simpson N.J., Kohr W.J., Singh A., Chisholm V., Hamilton R., Chang C.N. Use of heterologous and homologous signal sequences for secretion of heterologous proteins from yeast. Methods Emymol 1990; 185:421–436
    [Google Scholar]
  11. Hofemeister J., Kurtz A., Borriss R., Knowles J. The β-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 1986; 49:177–187
    [Google Scholar]
  12. Hollenberg C.P., Roggenkamp R., Erhart K., Breuning K., Reipen G. The expression of bacterial β-lactamase and its applications to gene technology in yeast. In Gene Expression in Yeast (Proceedings of The Alko Yeast Symposium June 1-3, Helsinki, Finland) 1983 Edited by Korhola M., Väisänen E. Helsinki: Alko; pp. 73–90
    [Google Scholar]
  13. Innis M.A., Gelfand D.H. A guide to methods and applications. In Innis M. A., Gelfand D.H., Sninsky J.J., White T.J. Edited by PCR Protocols London: Academic Press; 1990 pp. 3–12
    [Google Scholar]
  14. Keitel T., Simon O., Borriss R., Heinemann U. Molecular and active-site structure of a Bacillus (l-3,l-4)-β-glucanase. Proc Natl Acad Sci USA 1993; 90:5287–5291
    [Google Scholar]
  15. Kukuruzinska M.A., Berg M.L.E., Jackson B.J. Protein glycosylation in yeast. Ann Rev Biochem 1987; 56:915–944
    [Google Scholar]
  16. Lehle L., Bause E. Primary structural requirements for N and O-glycosylation of yeast mannoproteins. Biochim Biophys Acta 1984; 799:246–251
    [Google Scholar]
  17. Maley F., Trimble R.B., Tarentino A.L., Plummer T.H. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 1989; 180:195–204
    [Google Scholar]
  18. Mellor J., Dobson M.J., Roberts N.A., Tuite M.F., Emtage J.S., White S., Lowe P.A., Patel T., Kingsman A.J., Kingsman S.M. Efficient synthesis of enzymatically active calf chymosin in. Saccharomyces cerevisiae Gene 1983; 24:1–14
    [Google Scholar]
  19. Mortimer R.K., Contopoulou R. In 7th edn Thomas C.M. Yeast Genetic Stock Center Catalologue Berkeley: Department of Molecular and Cellular Biology, Division of Genetics, University of California; 1991 p. 19
    [Google Scholar]
  20. Narhi L.O., Arakawa T., Aoki K.H., Elmore R., Rohde M.F., Boone T., Strickland T.W. The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 1991; 266:23022–23026
    [Google Scholar]
  21. Nosoh Y., Sekiguchi T. Protein engineering for thermostability. Trends Biotechnol 1990; 8:16–20
    [Google Scholar]
  22. Olsen O., Thomsen K.K. Processing and secretion of barley (l-3,l-4)-β-glucanase in yeast. Carlsberg Res Commun 1989; 54:29–39
    [Google Scholar]
  23. Olsen O., Thomsen K.K. Improvement of bacterial β-glucanase thermostability by glycosylation. J Gen Microbiol 1991; 137:579–585
    [Google Scholar]
  24. Olsen O., Borriss R., Simon O., Thomsen K.K. Hybrid Bacillus (l-3,l-4)-β-glucanases: engineering thermostable enzymes by construction of hybrid genes. Mol & Gen Genet 1991; 225:177–185
    [Google Scholar]
  25. Petersen J.G.L., Kielland-Brandt M.C., Holmberg S., Nilsson-Tillgren T. Mutational analysis of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Mapping of ilv2 and ilv5. Carlsberg Res Commun 1983; 48:21–34
    [Google Scholar]
  26. Plummer T.H., Elder J.H., Alexander S., Phelan A.W., Tarentino A.L. Demonstration of peptide: N-glycosidase F activity in endo-β-N-acetylglucosaminidase F preparations. J Biol Chem 1984; 259:10700–10704
    [Google Scholar]
  27. Robbins P.W., Trimble R.B., Wirth D.F., Hering C., Maley F., Maley G.F., Das R., Gibson B.W., Royal N., Biemann K. Primary structure of the Streptomyces enzyme endo-β-N- acetylglucosaminidase H. J Biol Chem 1984; 259:7577–7583
    [Google Scholar]
  28. Roitsch T., Lehle L. Structural requirements for protein N-glycosylation. Eur J Biochem 1989; 181:525–529
    [Google Scholar]
  29. Tanner W., Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta 1987; 906:81–99
    [Google Scholar]
  30. Tarentino A.L., Quinones G., Trumble A., Changchien L., Duceman B., Maley F., Plummer T.H. Molecular cloning and amino acid sequence of Peptide-N4-(N-acetyl-β-D-glucosaminyl)asparagine amidase from Flavobacterium meningo-septicum. J Biol Chem 1990; 265:6961–6966
    [Google Scholar]
  31. Tomazic S.J., Klibanov A.M. Why is one Bacillus «- amylase more resistant against irreversible thermoinactivation than another?. J Biol Chem 1988; 263:3092–3096
    [Google Scholar]
  32. Wang P., Hill T.G., Wartchow C.A., Huston M.E., Oehler L.M., Smith M.B., Bednarski M.D., Callstrom M.R. New carbohydrate-based materials for the stabilization of proteins. J Am Chem Soc 1992; 114:378–380
    [Google Scholar]
  33. Wilson I.B.H., Gavel Y., von Heijne G. Amino acid distributions around O-linked glycosylation sites. Biochem J 1991; 275:529–534
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-1-159
Loading
/content/journal/micro/10.1099/13500872-140-1-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error