Skip to content
1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-1-145
1994-01-01
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/1/mic-140-1-145.html?itemId=/content/journal/micro/10.1099/13500872-140-1-145&mimeType=html&fmt=ahah

References

  1. Foster P.L. Directed mutation: between unicorns and goats. J Bacteriol 1992; 174:1711–1716
    [Google Scholar]
  2. Garrett J.M. Characterization of AAT1: a gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae. J Gen Microbiol 1989; 135:2429–2437
    [Google Scholar]
  3. Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae IV. Evidence for a general amino acid permease.. J Bacterial 1970; 103:770–777
    [Google Scholar]
  4. Hall B.G. Increased rates of advantageous mutations in response to environmental challenges. ASM News 1991; 57:82–86
    [Google Scholar]
  5. Heinemann J.A., Sprague G.F. Jr Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 1989; 340:205–209
    [Google Scholar]
  6. Heinemann J.A., Sprague G.F. Jr Transmission of plasmid DNA to yeast by conjugation with bacteria. Methods Enzymol 1991; 194:187–195
    [Google Scholar]
  7. Hinnen A., Hicks J.B., Fink G.R. Transformation of yeast. Proc Natl Acad Sci USA 1978; 75:1929–1933
    [Google Scholar]
  8. Horak J. Amino acid transport in eucaryotic microorganisms. Biochim Biophys Acta 1986; 864:223–256
    [Google Scholar]
  9. Klein H.L. Different types of recombinant events are controlled by the RADI and RAD52 genes of Saccharomyces cerevisiae. Genetics 1988; 120:367–377
    [Google Scholar]
  10. Klein H.L., Petes T.D. Intrachromosomal gene conversion in yeast. Nature 1981; 289:144–148
    [Google Scholar]
  11. Kotliar N., Stella C.A., Ramos E.H. Effect of ammonium ions on l-leucine entrance in Saccharomyces cerevisiae Repression and inhibition of the transport systems.. Rev Argent Microbiol 1990; 22:7–16
    [Google Scholar]
  12. Mittler J.E., Lenski R.E. Experimental evidence for an alternative to directed mutation in the bgl operon. Nature 1992; 356:446–448
    [Google Scholar]
  13. Novick A., Weiner M. Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 1957; 43:553–566
    [Google Scholar]
  14. Pillus L., Rine J. Epigenetic inheritance of transcriptional states in S cerevisiae. Cell 1989; 59:637–647
    [Google Scholar]
  15. Ramos E.H., De Bongioanni L.C., Stoppani A.O.M. Kinetics of l-[14C]leucine transport in Saccharomyces cerevisiae Effect of energy coupling inhibitors.. Biochim Biophys Acta 1980; 599:214–231
    [Google Scholar]
  16. Sherman F. Getting started with yeast. Methods Enzymol 1991; 194:3–21
    [Google Scholar]
  17. Sherman F., Wakem P. Mapping yeast genes. Methods Enzymol 1991; 194:38–57
    [Google Scholar]
  18. Stahl F.W. Unicorns revisited. Genetics 1992; 132:865–867
    [Google Scholar]
  19. Steele D.F., Jinks-Robertson S. Time-dependent mitotic recombination in Saccharomyces cerevisiae. Curr Genet 1993; 23:423–429
    [Google Scholar]
  20. Tullin S., Gjermansen C., Kielland-Brandt M.C. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae. Yeast 1991; 7:933–941
    [Google Scholar]
  21. Wainer S.R., Boveris A., Ramos E.H. Control of leucine transport in yeast by periplasmic binding proteins. Arch Biochem Biophys 1988; 262:481–490
    [Google Scholar]
  22. Woodward J.R., Cirillo V.P. Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. J Bacteriol 1977; 130:714–723
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-1-145
Loading
/content/journal/micro/10.1099/13500872-140-1-145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error