1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-96-1-1
1976-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/96/1/mic-96-1-1.html?itemId=/content/journal/micro/10.1099/00221287-96-1-1&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli. Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Austrian R., Bernheimer H. P., Smith E.E.B., Mills G. T. 1959; Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. Journal of Experimental Medicine 110:585–602
    [Google Scholar]
  3. Avery O. T., Macleod C. M., Mccarty M. 1944; Studies ON the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. Journal of Experimental Medicine 79:137–157
    [Google Scholar]
  4. Barrett J. T., Larson A. D., Kallio R. E. 1955; The nature of the adaptive lag of Pseudomonas fluorescens towards citrate. Journal of Bacteriology 65:187–192
    [Google Scholar]
  5. Beadle G. W., Tatum E. L. 1941; Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences of the United States of America 27:499–506
    [Google Scholar]
  6. Bernheimer H. P., Wermundsen I. E., Austrian R. 1968; Mutation in pneumococcus type III affecting multiple cistrons concerned with the synthesis of capsular polysaccharide. Journal of Bacteriology 96:1099–1102
    [Google Scholar]
  7. Boos W. 1969; The galactose binding protein and its relationship to the α-methylgalactosidepermease from Escherichia coli. European Journal of Biochemistry 10:66–73
    [Google Scholar]
  8. Brown C. E., Hogg R. W. 1972; A second transport system for l-arabinose in Escherichia coli B/r controlled by the araC gene. Journal of Bacteriology 111:606–613
    [Google Scholar]
  9. Campbell J.J.R., Stokes F. N. 1951; Tricarboxylic acid cycle in Pseudomonas aeruginosa. Journal of Biological Chemistry 190:853–858
    [Google Scholar]
  10. Cavalli-Sforza L. L. 1950; La sessualitá nei batteri. Bollettino dell’Istituto sieroterapico milanese 29:281–289
    [Google Scholar]
  11. Cavalli-Sforza L. L., Lederberg J., Lederberg E. M. 1953; An infective factor controlling sex compatibility in Bacterium coli. Journal of General Microbiology 8:89–103
    [Google Scholar]
  12. Curtis S. J., Epstein W. 1975; Phosphorylation of d-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase and glucokinase. Journal of Bacteriology 122:1189–1199
    [Google Scholar]
  13. Deere C. J., Dulaney A. D., Michelson I. D. 1939; The lactase activity OF Escherichia coli-mutabile. Journal of Bacteriology 37:355–363
    [Google Scholar]
  14. Dietz G. W., Heppel L. A. 1971; Studies on the uptake of hexose phosphates. II. The induction of the glucose-6-phosphate transport system by exogenous but not by endogenously formed glucose-6-phosphate. Journal of Biological Chemistry 246:2885–2890
    [Google Scholar]
  15. Doudoroff M., Hassid W. Z., Putnam E. W., Potter A. L., Lederberg J. 1949; Direct utilization of maltose by Escherichia coli. Journal of Biological Chemistry 179:921–934
    [Google Scholar]
  16. Downie A. W. 1972; Pneumococcal transformation - a backward view. Journal of General Microbiology 73:I–II
    [Google Scholar]
  17. Ephrussi-Taylor H. 1951; Genetic mechanisms in bacteria and bacterial viruses. III. Genetic aspects of transformations of Pneumococci. Cold Spring Harbor Symposia on Quantitative Biology 16:445–455
    [Google Scholar]
  18. Essenberg R. C., Kornberg H. L. 1975; Energy coupling in the uptake of hexose phosphates by Escherichia coli. Journal of Biological Chemistry 250:939–945
    [Google Scholar]
  19. Ferenci T., Kornberg H. L. 1974; The role of phosphotransferase-mediated syntheses of fructcse-I-phosphate and fructose-6-phosphate in the growth of Escherichia coli on fructose. Proceedings of the Royal Society B187:105–119
    [Google Scholar]
  20. Gale E. F. 1947; The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. Journal of General Microbiology 1:53–76
    [Google Scholar]
  21. Ganesan A. K., Rotman B. 1965; Transport systems for galactose and galactosides in Escherichia coli.Genetic determination and regulation of the methyl-galactosidepermease. Journal of Molecular Biology 16:42–50
    [Google Scholar]
  22. Griffith F. 1928; The significance of pneumococcal types. Journal of Hygiene 27:113–159
    [Google Scholar]
  23. Hayes W. 1952; Recombination in Bacterium coli K-12: unidirectional transfer of genetic material. Nature 169:118–119
    [Google Scholar]
  24. Hayes W. 1953a; Observations on a transmissible agent determining sexual differentiation in Bacterium coli. Journal of General Microbiology 8:72–88
    [Google Scholar]
  25. Hayes W. 1953b; The mechanism of genetic recombination in Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 18:75–93
    [Google Scholar]
  26. Hayes W. 1966; Genetic transformation: a retrospective appreciation. Journal of General Microbiology 45:385–397
    [Google Scholar]
  27. Henderson P.J.F. 1974; Application of the chemiosmotic theory to the transport of lactose, D-galactose and L-arabinose by Escherichia coli. In Comparative Biochemistry and Physiology of Transport pp. 409–424 Edited by Boltis L., Bloch K., Luria S. E., Lynen F. Amsterdam: North Holland Publishing Company;
    [Google Scholar]
  28. Henderson P.J.F., Dilks S. N., Giddens R. A. 1975; pH changes associated with the transport of sugars by Escherichia coli. In Biological Membranes 41 Proceedings of the 10th FBS Meeting pp. 43–53 Edited by Montreuil J., Mandel P. Amsterdam: North Holland Publishing Company;
    [Google Scholar]
  29. Hershey A. D., Chase M. 1952; Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology 36:39–56
    [Google Scholar]
  30. Horecker B. L., Thomas J., Monod J. 1960; Galactose transport in Escherichia coli.1. General properties studied with a galactokinaseless mutant. Journal of Biological Chemistry 235:1580–1585
    [Google Scholar]
  31. Hotchkiss R. D. 1952; The role of desoxyribonucleates in bacterial transformation. In Phosphorus Metabolism 11 pp. 426–436 Edited by McEIroy W. D., Glass B. Baltimore: Johns Hopkins Press;
    [Google Scholar]
  32. Hotchkiss R. D. 1974; The dawning years of the DNA revolution. Journal of General Microbiology (to be published).
    [Google Scholar]
  33. Jones-Mortimer M. C., Kornberg H. L. 1974; Genetical analysis of fructose utilization by Escherichia coli. Proceedings of the Royal Society B187:121–131
    [Google Scholar]
  34. Jones-Mortimer M. C., Kornberg H. L. 1976; Order of genes adjacent to ptsX on the Escherichia coli genome. Proceedings of the Royal Society B193:313–315
    [Google Scholar]
  35. Kogut M., Podoski E. P. 1953; Oxidative pathways in a fluorescent Pseudomonas. Biochemical Journal 55:800–811
    [Google Scholar]
  36. Kornberg H. L. 1972; Nature and regulation of hexose uptake by Escherichia coli. In The Molecular Basis of Biological Transport pp. 157–180 Edited by Woessner J. F. Jr Huijing F. New York and London: Academic Press;
    [Google Scholar]
  37. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli. Symposia of the Society for Experimental Biology 27:175–193
    [Google Scholar]
  38. Kornberg H. L. 1976; The nature and control of carbohydrate uptake by Escherichia coli. FEBS Letters 63:3–9
    [Google Scholar]
  39. Kornberg H. L., Jones-Mortimer M. C. 1975; PtsX: a gene involved in the uptake of glucose and of fructose by Escherichia coli. FEBS Letters 51:1–4
    [Google Scholar]
  40. Kornberg H. L., Riordan C. L. 1976; Uptake of galactose into Escherichia coli by facilitated diffusion. Journal of General Microbiology 94:75–89
    [Google Scholar]
  41. Kundig W., Ghosh S., Roseman S. 1964; Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proceedings of the National Academy of Sciences of the United States of America 52:1067–1074
    [Google Scholar]
  42. Leder I. G., Perry J. W. 1967; Galactose stimulation of β-galactosidase induction in galactokinaseless mutants of Escherichia coli. Journal of Biological Chemistry 242:457–462
    [Google Scholar]
  43. Lederberg J., Tatum E. L. 1946a; Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symposia on Quantitative Biology 11:113–114
    [Google Scholar]
  44. Lederberg J., Tatum E. L. 1946b; Gene recombination in Escherichia coli. Nature, London 158:558
    [Google Scholar]
  45. Lederberg J., Lederberg E. M., Zinder N. D., Lively E. R. 1951; Recombination analysis of bacterial heredity. Cold Spring Harbor Symposia on Quantitative Biology 16:413–441
    [Google Scholar]
  46. Lengeler J. 1966; Untersuchungen zum Glukose-Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Zeitschrift für Vererbungslehre 98:203–229
    [Google Scholar]
  47. Mcginnis J. F., Paigen K. 1969; Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. Journal of Bacteriology 100:902–913
    [Google Scholar]
  48. Mäkelä P. H., Stocker B.A.D. 1969; Genetics of polysaccharide biosynthesis. Annual Review of Genetics 3:291–322
    [Google Scholar]
  49. Miles R. J., Pirt S. J. 1973; Inhibition by 3-deoxy-3-fluoro-d-glucose of the utilization of lactose and other carbon sources by Escherichia coli. Journal of General Microbiology 76:305–318
    [Google Scholar]
  50. Mills G. T., Smith E.E.B. 1965; Biosynthesis of capsular polysaccharides in the Pneumococcus. Bulletin de la Société de chimie biologique 47:1752–1765
    [Google Scholar]
  51. Mitchell P. 1963; Molecule, group and electron translocation through natural membranes. Biochemical Society Symposia 22:142–168
    [Google Scholar]
  52. Mitchell P. 1973; Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. Journal of Bioenergetics 4:63–91
    [Google Scholar]
  53. Monod J. 1956; Remarks on the mechanism of enzyme induction. In Enzymes: units of biological structure and function pp. 7–28 Edited by Gaebler O. H. New York: Academic Press;
    [Google Scholar]
  54. Ordal G. W., Adler J. 1974a; Isolation and complementation of mutants in galactose taxis and transport. Journal of Bacteriology 117:509–516
    [Google Scholar]
  55. Ordal G. W., Adler J. 1974b; Properties of mutants in galactose taxis and transport. Journal of Bacteriology 117:517–526
    [Google Scholar]
  56. Pardee A. B. 1957; An inducible mechanism for accumulation of melibiose in Escherichia coli. Journal o, Bacteriology 73:376–385
    [Google Scholar]
  57. Pollock M. R. 1970; The discovery of DNA: an ironic tale of chance, prejudice and insight. Journal of General Microbiology 63:1–20
    [Google Scholar]
  58. Pouysségur J. M., Faik P., Kornberg H. L. 1974; Utilization of gluconate by Escherichia coli. Uptake of d-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. Biochemical Journal 140:193–203
    [Google Scholar]
  59. Repaske R., Wilson P. W. 1953; Oxidation of intermediates of the tricarboxylic acid cycle by extracts of Azotobacter agile. Proceedings of the National Academy of Sciences of the United States of America 39:225–232
    [Google Scholar]
  60. Rickenberg H. V., Cohen G. N., Buttin G., Monod J. 1956; La galactoside-permease d’ Escherichia coli. Annales de l’Institut Pasteur 91:829–857
    [Google Scholar]
  61. Robbins A. 1975; Regulation of Escherichia coli methylgalactoside transport system by gene mglD. Journal of Bacteriology 123:69–74
    [Google Scholar]
  62. Robin A., Kepes A. 1975; Inducible gluconate permease in a gluconate kinase-deficient mutant of Escherichia coli. Biochimica et biophysica acta 406:50–59
    [Google Scholar]
  63. Rogers D., Yu S-H. 1962; Substrate specificity of a glucose permease of Escherichia coli. Journal of Bacteriology 84:877–881
    [Google Scholar]
  64. Romano A. H., Eberhard S. J., Dingle S. L., Mcdowell T. D. 1970; Distributions of the phosphoenolpyruvate:glucosephosphotransferase system in bacteria. Journal of Bacteriology 104:808–813
    [Google Scholar]
  65. Roseman S. 1969; The transport of carbohydrates by a bacterial phosphotransferase system. Journal of General Physiology 54:138S–180S
    [Google Scholar]
  66. Roseman S. 1975; The bacterial phosphoenolpyruvate:sugar phosphotransferase system. Ciba Foundation Symposia 31: (new series) 225–241
    [Google Scholar]
  67. Rotman B., Ganesan A. K., Guzman R. 1968; Transport systems for galactose and galactosides in Escherichia coli.II. Substrate and inducer specificities. Journal of Molecular Biology 36:247–260
    [Google Scholar]
  68. Stein R., Schrecker O., Lauppe H. L., Hengstenberg H. 1974; The staphylococcal PEP-dependent phosphotransferase system: demonstration of a phosphorylated intermediate of the Enzyme I component. FEBS Letters 42:98–100
    [Google Scholar]
  69. Stent G. 1972; Prematurity and uniqueness in scientific discovery. Scientific American 228:84–93
    [Google Scholar]
  70. Stone R. W., Wilson P. W. 1952a; Respiratory activity of cell-free extracts from Azotobacter. Journal of Bacteriology 63:605–617
    [Google Scholar]
  71. Stone R. W., Wilson P. W. 1952b; The incorporation of acetate in acids of the citric acid cycle by Azotobacter extracts. Journal of Biological Chemistry 196:221–225
    [Google Scholar]
  72. Tatum E. L., Lederberg J. 1947; Gene recombination in the bacterium Escherichia coli. Journal of Bacteriology 53:673–684
    [Google Scholar]
  73. Taylor A. L., Trotter C. D. 1972; Linkage map of Escherichia coli strain K-12. Bacteriological Reviews 36:504–524
    [Google Scholar]
  74. Watson J. D., Crick F.H.C. 1953a; The structure of DNA. Cold Spring Harbor Symposia on Quantitative Biology 18:121–131
    [Google Scholar]
  75. Watson J. D., Crick F.H.C. 1953b; Genetical implications of the structure of desoxyribonucleic acid. Nature, London 171:964–967
    [Google Scholar]
  76. West I. C. 1970; Lactose transport coupled to proton movements in Escherichia coli. Biochemical and Biophysical Research Communications 41:655–661
    [Google Scholar]
  77. Wiesmeyer H., Cohn M. 1960; The characterization of the pathway of maltose utilization by Escherichia coli. III. A description of the concentrating mechanism. Biochimica et biophysica acta 39:440–447
    [Google Scholar]
  78. Wilson D. B. 1974; The regulation and properties of the galactose transport system in Escherichia coli KI2. Journal of Biological Chemistry 249:553–558
    [Google Scholar]
  79. Wollman E. L., Jacob F. 1955; Sur le mécanisme du transfert de matériel génétique au cours de la recombination chez Escherichia coli. Comptes rendus hebdomadaire des séances de l’Académie des sciences 240:2449–2451
    [Google Scholar]
  80. Wollman E. L., Jacob F. 1958; Sur les processus deconjugaison et de recombinaison chez Escherichia coli. V. Le mécanisme du transfert de matériel génétique. Annales de l’lnstitut Pasteur 95:641–666
    [Google Scholar]
  81. Wyatt H. V. 1975; Knowledge and prematurity: the journey from transformation to DNA. Perspectives in Biology and Medicine 18:149–156
    [Google Scholar]
  82. Zinder N. D., Lederberg J. 1952; Genetic exchange in Salmonella. Journal of Bacteriology 64:679–699
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-96-1-1
Loading
/content/journal/micro/10.1099/00221287-96-1-1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error