1887

Abstract

SUMMARY: Axenic cultures of some commercial strains of the cultivated mushroom, , produced primordia on malt agar medium. The number of primordia differed both between strains, and within each strain when inoculated on to replicate plates. Primordium formation was also dependent on the agar source; it was repressed by changes in the pH of the medium and its constitution, including the addition of further carbohydrate sources; and required translocation from a nutrient source and the presence of an air-agar interface. Two strains grown on malt agar formed complete sporophores, but only at a very low frequency. Attempts to produce mature sporophores from the primordia by using supplementary nutrients were unsuccessful.

Primordium formation was not stimulated by live suspensions or culture filtrates of , suspensions of other bacteria, iron salts, iron-binding compounds or other iron-containing compounds. Cyclic AMP, theophylline and caffeine also had no effect.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-95-2-313
1976-08-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/95/2/mic-95-2-313.html?itemId=/content/journal/micro/10.1099/00221287-95-2-313&mimeType=html&fmt=ahah

References

  1. Bridson E. Y., Brecker A. 1970; Design and formulation of microbial culture media. In Methods in Microbiology 3A pp. 229–295 Norris J. R., Ribbons D. W. Edited by London and New York: Academic.;
    [Google Scholar]
  2. Burnett J. H. 1968 Fundamentals of Mycology. London: Edward Arnold.;
    [Google Scholar]
  3. Burnham B. F., Neilands J. B. 1960; Studies on the metabolic function of the ferrichrome compounds. Journal of Biological Chemistry 236:554–559
    [Google Scholar]
  4. Couvy J. 1972; Étude de l’induction de la fructification chez Agaricus bisporus (Lange) Sing. (= Psalliota hortensis Cke): action du glucose. Comptes rendus hebdomadaire des séances de l’Academie des sciences 274:2475–2477
    [Google Scholar]
  5. Eger A. 1961; Untersuchungen über die Funktion der Deckschicht bei der Fruchtkörperbildung des Kulturchampignons, Psalliota bispora Lg. Archiv für Mikrobiologie 39:313–334
    [Google Scholar]
  6. Hawker L. 1966; Environmental influences on reproduction. In The Fungi 11 pp. 435–469 Ainsworth G. C., Sussman A. S. Edited by New York and London: Academic.;
    [Google Scholar]
  7. Hayes W. A. 1972; Nutritional factors in relation to mushroom production. In Mushroom Science 8 pp. 663–674 Edwards R. L. Edited by London: Mushroom Growers Association.;
    [Google Scholar]
  8. Hayes W. A. 1974; Microbiological activity in the casing layer and its relation to productivity and disease control. In The Casing Layer pp. 27–48 Hayes W. A. Edited by London: Mushroom Growers Association.;
    [Google Scholar]
  9. Hayes W. A., Randle P. E., Last F. T. 1969; The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Annals of Applied Biology 64:177–187
    [Google Scholar]
  10. Hume D. P., Hayes W. A. 1972; The production of fruit-body primordia in Agaricus bisporus (Lange) Sing, on agar media. In Mushroom Science 8 pp. 527–532 Edwards R. L. Edited by London: Mushroom Growers Association.;
    [Google Scholar]
  11. Long P. E., Jacobs L. 1974; Aseptic fruiting of the cultivated mushroom, Agaricus bisporus. Transactions of the British Mycological Society 63:99–107
    [Google Scholar]
  12. Macko V., Staples R. C., Allen P. J., Renwick J.A.A. 1971; Identification of the germination selfinhibitor from wheat stem rust uredospore. Science; New York: 173835–836
    [Google Scholar]
  13. Madelin M. F. 1956; Studies on the nutrition of Coprinus lagopus Fr., especially as affecting fruiting. Annals of Botany 20:307–330
    [Google Scholar]
  14. Matthews R. R., Niederpruem D. J. 1972; Differentiation in Coprinus lagopus. I. Control of fruiting and cytology of initial events. Archiv für Mikrobiologie 87:257–268
    [Google Scholar]
  15. Morton A. G. 1967; Morphogenesis in fungi. Science Progress, Oxford 55:597–611
    [Google Scholar]
  16. Neilands J. B. 1974 Microbial Iron Metabolism. New York: Academic;
    [Google Scholar]
  17. Park J. V., Agnihotri V. P. 1969; Bacterial metabolites trigger sporophore formation in Agaricus bisporus. Nature; London: 222984
    [Google Scholar]
  18. Schwalb M. N. 1971; Commitment to fruiting in synchronously developing cultures of the basidiomycete Schizophyllum commune. Archiv für Mikrobiologie 79:102–107
    [Google Scholar]
  19. Skerman V.B.D. 1967 A Guide to the Identification of the Genera of Bacteria. Baltimore, U.S.A.: Williams and Wilkins.;
    [Google Scholar]
  20. Smith J. E., Galbraith J. C. 1971; Biochemical and physiological aspects of differentiation in the fungi. Advances in Microbial Physiology 5:45–134
    [Google Scholar]
  21. Taber W. A. 1966; Morphogenesis in Basidiomycetes. In The Fungi 11 pp. 387–412 Ainsworth G. C., Sussman A. S. Edited by New York and London: Academic.;
    [Google Scholar]
  22. Treschow C. 1944; Nutrition of the cultivated mushroom. Dansk botanisk Arkiv 11:1–180
    [Google Scholar]
  23. Tschierpe H. J., Sinden J. S. 1964; Weitere Untersuchungen über die Bedeutung von Kohlendioxyd für die Fruktifikation des Kulturchampignon Agaricus campestris, var. bisporus (L) Lge. Archiv für Mikrobiologie 49:405–425
    [Google Scholar]
  24. Wessels J.G.H. 1965; Morphogenesis and biochemical processes in Schizophyllum commune Fr. Wentia 13:1–113
    [Google Scholar]
  25. Wessels J.G.H., Niederpruem D. J. 1967; Role of a cell-wall glucan-degrading enzyme in matings of Schizophyllum commune. Journal of Bacteriology 94:1594–1602
    [Google Scholar]
  26. Uno I., Ishikawa T. 1973a; Purification and identification of the fruit-inducing substances in Coprinus macrorhizus. Journal of Bacteriology 113:1240–1248
    [Google Scholar]
  27. Uno I., Ishikawa T. 1973b; Metabolism of adenosine 3′,5′-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus. Journal of Bacteriology 113:1249–1255
    [Google Scholar]
  28. Uno I., Ishikawa T. 1974; Effect of glucose on the fruiting body formation and adenosine 3′,5′-cyclic monophosphate levels in Coprinus macrorhizus. Journal of Bacteriology 120:96–100
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-95-2-313
Loading
/content/journal/micro/10.1099/00221287-95-2-313
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error