1887

Abstract

SUMMARY: In , a respiration-coupled transport system for -rhamnose caused accumulation of free -rhamnose, while a phosphoenolpyruvate: -rhamnose phosphotransferase system caused accumulation of -rhamnose -phosphate ( Levinson & Krulwich, 1974 ). The pathways for subsequent metabolism of -rhamnose and -rhamnose -phosphate have now been investigated. contains an inducible -rhamnose isomerase and -rhamnulokinase, as well as a constitutive -rhamnulose -phosphate aldolase. Results with mutants which are unable to metabolize -rhamnose suggest the presence of an -rhamnose -phosphate phosphatase, which forms free -rhamnose by hydrolysis of -rhamnose -phosphate produced by the phosphotransferase system. Mutants which lack this enzyme exhibited severe inhibition of growth in the presence of -rhamnose plus any of a variety of carbon sources. There is some evidence that this inhibition was due to accumulation of -rhamnose -phosphate at toxic concentrations within the bacteria. The metabolism of -rhamnose transported by the phosphotransferase system therefore appears to occur by hydrolysis of -rhamnose -phosphate to free -rhamnose by a phosphatase. Metabolism of the -rhamnose thus produced, and of that accumulated by the respiration-coupled transport system, then proceeds by the sequence of reactions: -rhamnose →-rhamnulose → -rhamnulose -phosphate → dihydroxyacetone phosphate plus -lactaldehyde.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-95-2-277
1976-08-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/95/2/mic-95-2-277.html?itemId=/content/journal/micro/10.1099/00221287-95-2-277&mimeType=html&fmt=ahah

References

  1. Chiu T. H., Feingold D. S. 1964; The purification and properties of l-rhamnulokinase. Biochimica et biophysica acta 92:489–497
    [Google Scholar]
  2. Chiu T. H., Feingold D. S. 1965; Substrate specificity of l-rhamnulose i-phosphate aldolase. Biochemical and Biophysical Research Communications 19:511–516
    [Google Scholar]
  3. Chiu T. H., Feingold D. S. 1969; l-Rhamnulose i-phosphate aldolase from Escherichia coli. Crystallization and properties. Biochemistry; New York: 898–108
    [Google Scholar]
  4. Dische Z., Borenfreund E. 1951; A new spectrophotometric method for the detection and determination of keto sugars and trioses. Journal of Biological Chemistry 192:583–587
    [Google Scholar]
  5. Domagk G. F., Zech R. 1966; l-Rhamnose isomerase. In Methods in Enzymology IX pp. 579–582 Wood W. A. Edited by New York: Academic.;
    [Google Scholar]
  6. Englesberg E. 1957; Physiological basis for rhamnose utilization by a mutant of Pasteurellapestis. Journal of Bacteriology 74:8–11
    [Google Scholar]
  7. Engelsberg E., Baron L. S. 1959; Mutation to l-rhamnose resistance and transduction to l-rhamnose utilization in Salmonella typhosa. Journal of Bacteriology 78:675–680
    [Google Scholar]
  8. Englesberg E., Anderson R. L., Weinberg R., Lee N., Hoffee P., Huttenhauer G., Boyer H. 1962; l-Arabinose-sensitive, l-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. Journal of Bacteriology 84:137–146
    [Google Scholar]
  9. Ferenci T., Kornberg H. L. 1973; The utilization of fructose by Escherichia coli. Biochemical Journal 132:341–347
    [Google Scholar]
  10. Fraenkel D. G. 1968; The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase. Journal of Biological Chemistry 243:6451–6457
    [Google Scholar]
  11. Fukasawa T., Nikaido H. 1961; Galactose-sensitive mutants of Salmonella. II. Bacteriolysis induced by galactose. Biochimica et biophysica acta 48:470–483
    [Google Scholar]
  12. Jensen P., Parkes C., Berkowitz D. 1972; Mannitol sensitivity. Journal of Bacteriology 111:351–355
    [Google Scholar]
  13. Kelker N. E., Hanson J. E., Anderson R. L. 1970; Alternate pathways of d-fructose metabolism in Aerobacter aerogenes. Journal of Biological Chemistry 245:2060–2065
    [Google Scholar]
  14. Krulwich T. A., Sobel M. E., Wolfson E. B. 1973; Alternate pathways of d-fructose transport and metabolism in Arthrobacter pyridinolis. Biochemical and Biophysical Research Communications 53:258–263
    [Google Scholar]
  15. Kurashashi K., Wahba A. J. 1958; Interference with growth of certa in Escherichia coli mutants by galactose. Biochimica et biophysica acta 30:298–302
    [Google Scholar]
  16. Levinson S. L., Krulwich T. A. 1974; Alternate pathways of l-rhamnose transport in Arthrobacter pyridinolis. Archives of Biochemistry and Biophysics 160:445–450
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall A. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  18. Newsholme E. A., Robinson J., Taylor K. 1967; A radiochemical enzymatic activity assay for glycerol kinase and hexokinase. Biochimica et biophysica acta 132:338–346
    [Google Scholar]
  19. Partridge S. M. 1948; Filter-paper partition chromatography of sugars. Biochemical Journal 42:238–263
    [Google Scholar]
  20. Power J. 1967; The l-rhamnose genetic system in Escherichia coli K-12. Genetics 55:557–568
    [Google Scholar]
  21. Sawada H., Takagi Y. 1964; The metabolism of l-rhamnose in Escherichia coli. III. l-Rhamnulose i-phosphate aldolase. Biochimica et biophysica acta 92:26–32
    [Google Scholar]
  22. Schwartz N. B., Abram D., Feingold D. S. 1974; l-Rhamnulose i-phosphate aldolase of Escherichia coli. The role of metal in enzyme structure. Biochemistry; New York: 13:1716–1730
    [Google Scholar]
  23. Sobel M. E., Krulwich T. A. 1973; Metabolism of d-fructose by Arthrobacter pyridinolis. Journal of Bacteriology 113:907–913
    [Google Scholar]
  24. Solomon E., Lin E.C.C. 1972; Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. Journal of Bacteriology 111:566–574
    [Google Scholar]
  25. Takagi Y., Sawada H. 1964a; The metabolism of l-rhamnose in Escherichia coli. I. l-Rhamnose isomerase. Biochimica et biophysica acta 92:10–17
    [Google Scholar]
  26. Takagi Y., Sawada H. 1964b; The metabolism of l-rhamnose in Escherichia coli. II. l-Rhamnulose kinase. Biochimica et biophysica acta 92:18–25
    [Google Scholar]
  27. Wolfson E. B., Krulwich T. A. 1974; Requirement for a functional respiration-coupled d-fructose transport system for induction of phosphoenolpyruvate: d-fructose phosphotransferase activity. Proceedings of the National Academy of Sciences of the United States of America 71:1739–1742
    [Google Scholar]
  28. Wolfson E. B., Sobel M. E., Krulwich T. A. 1973; Phosphoenolpyruvate:fructose phosphotransferase activity in whole cells and membrane vesicles of Arthrobacter pyrididinolis. Biochimica et biophysica acta 321:181–188
    [Google Scholar]
  29. Wolfson P. J., Krulwich T. A. 1972; Inhibition of isocitrate lyase: the basis for inhibition of growth of two Arthrobacter species by pyruvate. Journal of Bacteriology 112:356–364
    [Google Scholar]
  30. Yarmolinsky M. B., Wiesmeyer H., Kalckar H. M., Jordan E. 1959; Hereditary defects in galactose metabolism in Escherichia coli mutants. II. Galactose-induced sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45:1786–1791
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-95-2-277
Loading
/content/journal/micro/10.1099/00221287-95-2-277
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error