Growth on -Arabitol of a Mutant Strain of K12 Using a Novel Dehydrogenase and Enzymes Related to -1,2-Propanediol and -Xylose Metabolism Free

Abstract

Summary: 12 cannot grow on -arabitol, -arabitol, ribitol or xylitol ( Reiner, 1975 ). Using a mutant of 12 (strain 3; Sridhara ., 1969 ) that can grow on -1,2-propanediol, a second-stage mutant was isolated which can utilize -arabitol as sole source of carbon and energy for growth. -Arabitol is probably transported into the bacteria by the same system as that used for the transport of -1,2-propanediol. The second-stage mutant constitutively synthesizes a new dehydrogenase, which is not present in the parent strain 3. This enzyme, whose native substrate may be -galactose, apparently dehydrogenates -arabitol to -xylulose, and its structural gene is located at 68·5 ± 1 min on the genetic map. -Xylulose is subsequently catabolized by the enzymes of the -xylose metabolic pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-94-2-246
1976-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/94/2/mic-94-2-246.html?itemId=/content/journal/micro/10.1099/00221287-94-2-246&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mendel M., Chen G. C. C. 1965; Optimal condition for mutagenesis by N-methyl- N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  2. Anderson R. L., Wood W. A. 1962; Pathway of l-xylose and l-lyxose degradation in Aerobacter aerogenes. Journal of Biological Chemistry 237:296–303
    [Google Scholar]
  3. Bachmann B. J. 1972; Pedigrees of some mutant strains of Escherichia coli K12. Bacteriological Reviews 36:525–557
    [Google Scholar]
  4. Betz J. L., Brown J. E., Clarke P. H., Day M. 1974; Genetic analysis of amidase mutants of Pseudomonas aeruginosa. Genetic Research, Cambridge 23:335–359
    [Google Scholar]
  5. Brown J. E., Brown P. R., Clarke P. H. 1969; Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produces an amidase with altered substrate specificity. Journal of General Microbiology 57:273–385
    [Google Scholar]
  6. Burleigh B. D., Rigby P. W. J., Hartley B. S. 1974; A comparison of wild-type and mutant ribitol dehydrogenases from Klebsiella aerogenes. Biochemical Journal 143:341–352
    [Google Scholar]
  7. Charnetzky W. T., Mortlock R. P. 1974a; Ribitol catabolic pathway in Klebsiella aerogenes. Journal of Bacteriology 119:162–169
    [Google Scholar]
  8. Charnetzky W. T., Mortlock R. P. 1974b; d-Arabitol catabolic pathway in Klebsiella aerogenes. Journal of Bacteriology 119:170–175
    [Google Scholar]
  9. Clarke P. H. 1974; The evolution of enzymes for the utilization of novel substrates. Symposium of the Society for General Microbiology 24:183–217
    [Google Scholar]
  10. Cocks G. T., Aguilar J., Lin E. C. C. 1974; Evolution of l-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for l-fucose and l-lactate metabolism. Journal of Bacteriology 118:83–88
    [Google Scholar]
  11. David J. E., Wiesmeyer H. 1970; Control of xylose metabolism in Escherichia coli. Biochimica et bio-physica acta 201:497–499
    [Google Scholar]
  12. Dische Z., Borenfreund E. 1951; A new spectrophotometeric method for detection and determination of keto sugars and trioses. Journal of Biological Chemistry 192:583–587
    [Google Scholar]
  13. Doudoroff M. 1962; dc-Galactose dehydrogenese of Pseudomonas saccharophila. Methods of Enzymology 5:339–341
    [Google Scholar]
  14. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177:751–766
    [Google Scholar]
  15. Hayashi S., Koch J. P., Lin E. C. C. 1964; Active transport of l-α-glycerophosphate in Escherichia coli. Journal of Biological Chemistry 239:3098–3105
    [Google Scholar]
  16. Hegeman G. D., Rosenberg S. L. 1970; The evolution cf bacterial enzyme systems. Annual Review of Microbiology 24:429–462
    [Google Scholar]
  17. Horowitz N. H. 1945; On the evolution of biochemical syntheses. Proceedings of the National Academy of Sciences of the United States of America 31:153–157
    [Google Scholar]
  18. Kalckar H. M., Kurahashi K., Jordan E. 1959; Heredity defects in galactose metabolism in Escherichia coli mutants. I. Determination of enzyme activity. Proceedings of the National Academy of Sciences of the United States of America 45:1776–1786
    [Google Scholar]
  19. Lederberg J. 1951; Genetics studies with bacteria. In Genetics in the 20th Century pp. 263–289 Dunn L. C. Edited by New York: MacMillan;
    [Google Scholar]
  20. Lerner S. A., Wu T. T., Lin E. C. C. 1964; Evolution of catabolic pathways in bacteria. Science, New York 146:1313–1315
    [Google Scholar]
  21. Lin E. C. C. 1961; An inducible d-arabitol dehydrogenase from Aerobactor aerogenes. Journal of Biological Chemistry 236:31–36
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Mortlock R. P., Fossitt D. D., Wood W. A. 1965; A basis for utilization of unnatural pentoses and pentitols by Aerobacter aerogenes. Proceedings of the National Academy of Sciences of the United States of America 54:572–579
    [Google Scholar]
  24. Reiner A. M. 1975; Genes for ribitol and d-arabitol catabolism in Escherichia coli: their loci in c strains and absence in K12 and B strains. Journal of Bacteriology 123:530–536
    [Google Scholar]
  25. Rigby P. W. J., Burleigh D. D.Jr Hartley B. S. 1974; Gene duplication in experimental enzyme evolution. Nature; London: 251:200–204
    [Google Scholar]
  26. Skaar P. D., Garen A. 1956; The orientation and extent of gene transfer in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 42:619–624
    [Google Scholar]
  27. Sridhara S., Wu T. T. 1969; Purification and properties of lactaldehyde dehydrogenase from Escherichia coli. Journal of Biological Chemistry 244:5233–5238
    [Google Scholar]
  28. Sridhara S., Wu T. T., Chused T. M., Lin E. C. C. 1969; Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1,2-propanediol. Journal of Bacteriology 98:87–95
    [Google Scholar]
  29. Taylor A. L., Trotter C. D. 1972; Linkage map of Escherichia coli strain K12. Bacteriological Reviews 36:504–524
    [Google Scholar]
  30. Wilson B. L., Mortlock R. P. 1973; Regulation of d-xylcse and d-arabitol catabolism by Aerobacter aerogenes. Journal of Bacteriology 113:1404–1411
    [Google Scholar]
  31. Wu T. T., Lin E. C. C., Tanaka S. 1968; Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon source. Journal of Bacteriology 96:447–456
    [Google Scholar]
  32. Yamolinsky M. B., Wiesmeyer H., Kalckar H. M., Jordan E. 1959; Heredity defects in galactose metabolism in Escherichia coli mutants. II. Galactose-induced sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45:1786–1791
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-94-2-246
Loading
/content/journal/micro/10.1099/00221287-94-2-246
Loading

Data & Media loading...

Most cited Most Cited RSS feed