1887

Abstract

Summary: Bacilysin is hydrolysed to -alanine and anticapsin by suspensions of a bacilysin-sensitive strain of but not by those of a resistant strain derived from it. In contrast, it is hydrolysed by extracts of both strains. Anticapsin is a powerful inhibitor of glucosamine synthetase in extracts of both the bacilysin-sensitive and -resistant strains of . Bacilysin, by comparison, is a relatively poor inhibitor of glucosamine synthetase in crude extracts when its hydrolysis is inhibited by EDTA. A phenylalanine auxotroph of readily uses -alanyl--phenylalanine for growth, but a bacilysin-resistant mutant of this strain does not. It is suggested that the antibacterial activity of bacilysin depends on its transport into the organism, its hydrolysis to anticapsin and on inhibition by the latter of glucosamine synthetase, and that bacilysin-resistant mutants are defective in a transport system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-94-1-46
1976-05-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/94/1/mic-94-1-46.html?itemId=/content/journal/micro/10.1099/00221287-94-1-46&mimeType=html&fmt=ahah

References

  1. Abraham E.P., Florey H.W. 1949 In Antibiotics 2 p. 1463 Florey H. W., Chain E., Heatley N. G., Jennings M. A., Sanders A. G., Abraham E. P., Florey M. E. Edited by Oxford: Oxford University Press;
    [Google Scholar]
  2. Bates C.J., Handschumacher R.E. 1969; Inactivation and resynthesis of glucosamine-6-phosphate synthetase after treatment with glutamine analogs. Advances in Enzyme Regulation 7:183–204
    [Google Scholar]
  3. Bayer E., Gugel K. H., Hagele K., Hagenmaier H., Jessipow S., König W. A., Zahner H. 1972; Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und Phosphinothricyl Alanyl-Alanin. Helvetica chimica acta 55:224–239
    [Google Scholar]
  4. Brown J. L. 1973; Purification and properties of dipeptidase M from Escherichia coli B. Journal of Biological Chemistry 248:409–416
    [Google Scholar]
  5. Chmara H., Borowski E. 1973a; Antibiotic tetaine, a new inhibitor of murein precursors synthesis in Escherichia coli K-12. Biochemical and Biophysical Research Communications 52:1381–1387
    [Google Scholar]
  6. Chmara H., Borowski E. 1973b; The inhibition of murein synthesis in Staphylococcus aureus by the antibiotic tetaine. Biochemical and Biophysical Research Communications 55:1147–1155
    [Google Scholar]
  7. Ghosh S., Blumenthal H. J., Davidson E., Roseman S. 1960; Glucosamine metabolism.V. Enzymatic synthesis of glucosamine 6-phosphate. Journal of Biological Chemistry 235:1265–1273
    [Google Scholar]
  8. Hendlin D., Stapley E. O., Jackson M., Wallick H., Miller A. K., Wolf F. J., Miller T. W., Chaiet L., Kahan F. M., Foltz E. L., Woodruff H. B., Mata J. M., Hernandez S., Mochales S. 1969; Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science, New York 166:122–123
    [Google Scholar]
  9. Hunter A., Downs C. E. 1945; The inhibition of arginase by amino acids. Journal of Biological Chemistry 157:427–446
    [Google Scholar]
  10. Kaminski K., Sokolowska T. 1973; The probable identity of bacilysin and tetaine. Journal of Antibiotics 26:184–185
    [Google Scholar]
  11. Katz A. M., Dreyer W. J., Anfinsen C. B. 1959; Peptide separation by two-dimensional chromatography and electrophoresis. Journal of Biological Chemistry 234:2897–2900
    [Google Scholar]
  12. Kenig M.D.J., Abraham E. P. 1976; Antimicrobial activities and antagonists of bacilysin and anticapsin. Journal of General Microbiology 94:37–45
    [Google Scholar]
  13. Kloos W. E., Pattee P. A. 1965; A biochemical characterization of histidine-dependent mutants of Staphylococcus aureus. Journal of General Microbiology 39:185–194
    [Google Scholar]
  14. Payne J. W. 1972; The characterization of dipeptidases from Escherichia coli. Journal of General Microbiology 71:267–279
    [Google Scholar]
  15. Pruess D. L., Scannell J. P., Ax H. A., Kellett M., Weiss F., Demny T. C., Stempel A. 1973; Antimetabolites produced by microorganisms. VII. l-(N5-Phosphono)methionine-S-sulfoximinyl-l-alanyl-l-alanine. Journal of Antibiotics 26:261–266
    [Google Scholar]
  16. Rogers H. J., Lomakina N., Abraham E. P. 1965; Observations on the structure of bacilysin. Biochemical Journal 97:579–586
    [Google Scholar]
  17. Shah R., Neuss N., Gorman M., Boeck L. D. 1970; Isolation, purification and characterisation of anticapsin. Journal of Antibiotics 23:613–617
    [Google Scholar]
  18. Simmonds S. 1970; Peptidase activity and peptide metabolism in Escherichia coli k-12. Biochemistry 9:1–9
    [Google Scholar]
  19. Simmonds S., Toye N. O. 1966; Peptidases in spheroplasts of Escherichia coli K-12. Journal of Biological Chemistry 241:3852–3860
    [Google Scholar]
  20. Strominger J. L. 1969; Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lectures 64:179–213
    [Google Scholar]
  21. Sussman A. J., Gilvarg C. 1970; Peptidases in Escherichia colik-12 capable of cleaving lysine homopeptides. Journal of Biological Chemistry 245:6518–6524
    [Google Scholar]
  22. Walker J. E., Abraham E. P. 1970; The structure of bacilysin and other products of Bacillus subtilis. Biochemical Journal 118:563–570
    [Google Scholar]
  23. Whitney J. G., Funderburk S. S. 1970; Anticapsin, a new biologically active metabolite. IV. Mechanism of action. Abstracts for the X International Congress for Microbiology, Mexico City p. 101
    [Google Scholar]
/content/journal/micro/10.1099/00221287-94-1-46
Loading
/content/journal/micro/10.1099/00221287-94-1-46
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error