1887

Abstract

Summary: The dipeptide antibiotic bacilysin is active against a wide range of bacteria and against . Its C-terminal amino acid, anticapsin, is a very poor antibacterial agent. The activities of both substances are strongly dependent on the nature of the culture medium. In a minimal medium the minimum inhibitory concentration for bacilysin with is 10 g ml. The action of bacilysin is antagonized by a variety of dipeptides and that of anticapsin by a number of amino acids. With several bacteria, bacilysin-resistant mutants are found in unusually large numbers. It is suggested that peptide and amino acid transport systems play a role in these phenomena. The antimicrobial action of bacilysin is also inhibited by glucosamine and -acetylglucosamine. This antibiotic may therefore interfere with glucosamine synthesis and thus with the synthesis of microbial cell walls.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-94-1-37
1976-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/94/1/mic-94-1-37.html?itemId=/content/journal/micro/10.1099/00221287-94-1-37&mimeType=html&fmt=ahah

References

  1. Abraham E. P., Callow D., Gilliver K. 1946; Adaptation of Staphylococcus aureus to growth in the presence of certain antibiotics. Nature; London: 158818–821
    [Google Scholar]
  2. Abraham E. P., Florey H. W. 1949; Antibiotics from bacteria in the genus Bacillus. In Antibiotics 1 p. 457 Florey H. W., Chain E., Heatley N. G., Jennings M. A., Sanders A. G., Abraham E. P., Florey M. E. Edited by Oxford: Oxford University Press;
    [Google Scholar]
  3. Atsumi K., Oiwa R., Omura S. 1975; Production of bacillin by Bacillus subtilis sp. strain no. km-208 and its identity with tetaine (bacilysin). Journal of Antibiotics 28:77–78
    [Google Scholar]
  4. Barak Z., Gilvarg C. 1974; Triornithine-resistant strain of Escherichia coli: isolation, definition and genetic studies. Journal of Biological Chemistry 249:143–148
    [Google Scholar]
  5. Barak Z., Gilvarg C. 1975; Peptide transport. In Biomembranes 7 pp. 167–218 Manson L. A. Edited by London: Plenum Press;
    [Google Scholar]
  6. Brownlee K. A., Delves C. S., Dorman M., Green C. A., Grenfell E., Johnson J. D. A., Smith N. 1948; The biological assay of streptomycin by a modified cylinder plate method. Journal of General Microbiology 2:40–53
    [Google Scholar]
  7. Cohen G. N., Rickenberg H. V. 1956; Concentration specifique reversible des amino acides chez Escherichia coli. Annales de l’Institut Pasteur 91:693–720
    [Google Scholar]
  8. De Felice M., Guardiola J., Lamberti A., Iaccarino M. 1973; Escherichia colik-12 mutants altered in the transport systems for oligo- and dipeptides. Journal of Bacteriology 116:751–756
    [Google Scholar]
  9. Dobrogosz W. J. 1968; N-Acetylglucosamine assimilation in Escherichia coli and its relation to catabolite repression. Journal of Bacteriology 95:585–591
    [Google Scholar]
  10. Felix A., Pitt R. M. 1935; Virulence and immunogenic activities of B. typhosus in relation to its antigenic constituents. Journal of Hygiene 35:428–436
    [Google Scholar]
  11. Foster J. W., Woodruff H. B. 1946; Bacillin, a new antibiotic substance from a soil isolate of Bacillus subtilis. Journal of Bacteriology 51:363–369
    [Google Scholar]
  12. Grenson M., Hou C., Crabeel M. 1970; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. Journal of Bacteriology 103:770–777
    [Google Scholar]
  13. Hunter D. R., Segal I. H. 1973; Effect of weak acids on amino acid transport by Peniciilium chrysogenum. Journal of Bacteriology 113:1184–1192
    [Google Scholar]
  14. Kaminski K., Sokolowska T. 1973; The probable identity of bacilysin and tetaine. Journal of Antibiotics 26:184–185
    [Google Scholar]
  15. Kay D., Fildes P. 1950; The calcium requirement of a typhoid bacteriophage. British Journal of Experimental Pathology 31:338–348
    [Google Scholar]
  16. Kenig M., Vandamme E., Abraham E. P. 1976; The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. Journal of General Microbiology 94:46–54
    [Google Scholar]
  17. Magill C. W., Nelson S. O., D’Ambrosio S. M., Glover G. I. 1973; Histidine uptake in mutant strains of Neurosporacrassa via the general transport system for amino acids. Journal of Bacteriology 113:1320–1325
    [Google Scholar]
  18. Neuss N., Molloy B. B., Shah R., De La Higuera N. 1970; The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus. Biochemical Journal 118:571–575
    [Google Scholar]
  19. Payne J. W. 1968; Oligopeptide transport in Escherichia coli. Journal of Biological Chemistry 243:3395–3403
    [Google Scholar]
  20. Payne J. W., Gilvarg C. 1968; The role of terminal carboxyl group in peptide transport in Escherichia coli. Journal of Biological Chemistry 243:335–340
    [Google Scholar]
  21. Robinson J. H., Anthony C., Drabble W. T. 1973; Regulation of the acidic amino-acid permease of Aspergillus nidulans. Journal of General Microbiology 79:65–80
    [Google Scholar]
  22. Rogers H. J., Newton G. G. F., Abraham E. P. 1965; Production and purification of bacilysin. Biochemical Journal 97:573–578
    [Google Scholar]
  23. Shah R., Neuss N., Gorman M., Boeck L. D. 1970; Isolation, purification and characterisation of anticapsin. Journal of Antibiotics 23:613–617
    [Google Scholar]
  24. Suzuki J., Hori M., Saeki T., Umezawa H. 1972; Macarbomycin, an inhibitor of peptidoglycan synthesis. Journal of Antibiotics 25:94–104
    [Google Scholar]
  25. Templeton B. A., Savageau M. A. 1974; Transport of biosynthetic intermediates. Journal of Bacteriology 117:1002–1009
    [Google Scholar]
  26. Walker J. E., Abraham E. P. 1970a; Isolation of bacilysin and a new amino acid from culture filtrates of Bacillus subtilis. Biochemical Journal 118:557–561
    [Google Scholar]
  27. Walker J. E., Abraham E. P. 1970b; The structure of bacilysin and other products of Bacillus subtilis. Biochemical Journal 118:563–570
    [Google Scholar]
  28. Walton R. B., Rickes E. L. 1962; Reversal of the antibiotic, bacillin, by N-acetylglucosamine. Journal of Bacteriology 84:1148–1151
    [Google Scholar]
  29. Whitney J. G., Funderburk S. S. 1970; Anticapsin, a new biologically active metabolite. IV. Mechanism of action. Abstracts for the X International Congress for Microbiology, Mexico City p. 101
    [Google Scholar]
  30. Whitney J. G., Funderburk S. S., Westhead J. E., Lively D. H., Solenburg J. M., Denney J. W. 1970; Anticapsin, a new biologically active metabolite. I. Anticapsular screen and assay. Bacteriological Proceedings 7:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-94-1-37
Loading
/content/journal/micro/10.1099/00221287-94-1-37
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error