1887

Abstract

SUMMARY: By suitable choice of medium, has been grown both in normal (length 2 μm) and filamentous (length up to 60 μm) forms. Both forms were highly motile, and negatively-stained preparations showed bipolar flagellated cells, with an average of seven flagella at each pole. Motion consisted of a series of runs and tumbles, the distribution of run time-lengths being Poissonian. Both forms tumbled in response to dark shock and showed negative chemotaxis to oxygen. The observation that the motility pattern was very similar in normal and filamentous forms makes chemical control of tumbling unlikely and favours a system involving membrane potentials.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-93-2-346
1976-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/93/2/mic-93-2-346.html?itemId=/content/journal/micro/10.1099/00221287-93-2-346&mimeType=html&fmt=ahah

References

  1. Adam G., Delbruck M. 1968; Reduction of dimensionality in biological dilfusion processes. In Structural Chemistry and Molecular Biology pp. 198–215 Rich A., Davidson N. Edited by San Francisco: W. H. Freeman;
    [Google Scholar]
  2. Adler J., Tso W.-W. 1974; ‘Decision’-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science; New York: 1841292–1294
    [Google Scholar]
  3. Banks G., Schaefer D.W., Albert S.S. 1975; Light-scattering study of the temperature dependence of Escherichia coli motility. Biophysical Journal 15:253–261
    [Google Scholar]
  4. Berg H.C. 1974; Bacterial behaviour. Nature; London: 254389–392
    [Google Scholar]
  5. Berg H.C., Brown D.A. 1972; Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature; London: 239500–504
    [Google Scholar]
  6. Bose S.K. 1963; Media for anaerobic growth of photosynthetic bacteria. In Bacterial Photosynthesis pp. 501–510 Gest H., San Pietro A., Vernon L. P. Edited by Ohio: Antioch Press;
    [Google Scholar]
  7. Caraway B.H., Krieg N.R. 1972; Uncoordination and recoordination in Spirillum volutans. Canadian Journal of Microbiology 18:1749–1759
    [Google Scholar]
  8. Clayton R.K. 1958; On the interplay of environmental factors affecting taxis and motility in Rhodospirillum rubrum. Archiv für Mikrobiologie 29:189–212
    [Google Scholar]
  9. Clayton R.K. 1964; Phototaxis in micro-organisms. In Photophysiology 2 pp. 51–77 Giese A. C. Edited by New York: Academic Press;
    [Google Scholar]
  10. Cohen-Bazire G., London J. 1967; Basal organelles of bacterial flagella. Journal of Bacteriology 94:458–465
    [Google Scholar]
  11. Dean A.C.R., Hinshelwood C. 1966 Growth, Function and Regulation in Bacterial Cells. Oxford: Oxford Univ. Press;
    [Google Scholar]
  12. Engelmann T.W. 1879; Physiologic der Protoplasma- und Flimmerbewegung. In Hermans Handbuch der Physiologie, I: pp. 343–408 Leipzig
    [Google Scholar]
  13. Feinleib M.E., Curry G.M. 1967; Methods for measuring phototaxis of cell population and individual cells. Physiologia plantarum 20:1085–1095
    [Google Scholar]
  14. Grossman S.I., Turner N.E. 1974 In Mathematics for the Biological Sciences, pp. 97–100 New York: Macmillan;
    [Google Scholar]
  15. Iino T., Mitani M. 1966; Flagella-shape mutants in Salmonella. Journal of General Microbiology 44:27–40
    [Google Scholar]
  16. Koshland D.E. 1974; Chemotaxis as a model for sensory systems. FEBS Letters 40:53–59
    [Google Scholar]
  17. Krieg N.R., Tomelty J.P., Wells J.S. 1967; Inhibition of flagellar coordination in Spirillum volutans. Journal of Bacteriology 94:1431–1436
    [Google Scholar]
  18. Kung C., Chang S.-Y., Satow Y., Van Houten J., Hansma H. 1975; Genetic dissection of behaviour in Paramecium. Science; New York: 188898–904
    [Google Scholar]
  19. Murray R.G.E., Birch-Andersen A. 1963; Specialised structure in the region of the flagella tuft in Spirillum serpens. Canadian Journal of Microbiology 9:393–401
    [Google Scholar]
  20. Naitoh Y., Eckert R. 1969; Ciliary orientation; controlled by cell membrane or by intracellular fibrils. Science; New York: 1661633–1635
    [Google Scholar]
  21. Parkinson J.S. 1974; Data processing by the chemotaxis machinery of Escherichia coli. Nature; London: 252317–319
    [Google Scholar]
  22. Rigaud J.C., Gary-Bobo C.M., Lange Y. 1972; Diffusion processes in lipid-water lamellar phases. Biochimica et biophysica acta 266:72–84
    [Google Scholar]
  23. Silverman M., Simon M. 1974; Flagellar rotation and the mechanism of bacteria motility. Nature 249:73–74
    [Google Scholar]
  24. Taylor B.L., Koshland D.E. 1974; Reversal of flagellar rotation in monotrichous and peritrichous bacteria; generation of changes in direction. Journal of Bacteriology 119:640–642
    [Google Scholar]
  25. Vaituzis Z., Doetsch R.N. 1969; Motility tracks; technique for quantitative study of bacterial movement. Applied Microbiology 17:584–588
    [Google Scholar]
  26. Van Niel C.B. 1944; The culture, general physiology, morphology, and classification of the non-sulphur purple and brown bacteria. Bacteriological Reviews 8:1–118
    [Google Scholar]
  27. Williams M.A., Chapman G.B. 1961; Electron microscopy of flagellation in species of Spirillum. Journal of Bacteriology 81:195–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-93-2-346
Loading
/content/journal/micro/10.1099/00221287-93-2-346
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error