1887

Abstract

SUMMARY: assimilates peptides and hydrolyses them with intracellular peptidases. Amino acid auxotrophs ( or ) grew on a variety of di-and tripeptides up to twice as slowly as with free amino acids. has separate uptake systems for both dipeptides and oligopeptides (three or more residues). Although the dipeptide system transported a variety of structurally diverse dipeptides it did not transport peptides having either unprotonatable N-terminal amino groups, blocked C-terminal carboxyl groups, -residues, three or more residues, -methylated peptide bonds, or -amino acids. Oligopeptide uptake lacked amino acid side-chain specificity, required a free N-terminal -residue and had an upper size limit. Glycylglycyl-, --fluorophenylalanine inhibited growth of . Uptake of glycylglycyl[1-C]alanine was rapid and inhibited by 2,4-dinitrophenol. Both dipeptide and oligopeptide uptake were constitutive. Dipeptides competed with oligopeptides for oligopeptide uptake, but oligopeptides did not compete in the dipeptide system. Final bacterial yields were 5 to 10 times greater when was grown on histidyl di-or tripeptides rather than on free histidine because the histidyl residue was protected from catabolism by -histidine ammonia-lyase.

Methionine peptides could satisfy the methionine requirements of . Generation times on glycylmethionine and glycylmethionylglycine were equal to those obtained with free methionine. Methionylglycylmethionylmethionine gave a generation time twice that of free methionine. Growth of was inhibited by glycylglycyl-, --fluorophenylalanine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-92-2-283
1976-02-01
2021-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/92/2/mic-92-2-283.html?itemId=/content/journal/micro/10.1099/00221287-92-2-283&mimeType=html&fmt=ahah

References

  1. Ames B. N., Ames G. F., Young J. D., Tsuchiya D., Lecocq J. 1973; Illicit transport: the oligopeptide permease. Proceedings of the National Academy of Sciences of the United States of America 70:456–458
    [Google Scholar]
  2. Anderson G. W., Zimmerman J. E., Callahan F. M. 1967; A reinvestigation of the mixed carbonic anhydride method of peptide synthesis. Journal of the American Chemical Society 89:5012–5017
    [Google Scholar]
  3. Beck T. 1968 Microbiologie des Bodens pp. 74401402 Munich: Bayerischer Landwirtschaftverlag.;
    [Google Scholar]
  4. Brenner M., Huber W. 1953; Herstellung von α-Aminosäureestern durch Alkoholyse der Methylester. Helvetica chemica acta 36:1109–1115
    [Google Scholar]
  5. Britten R. J., McClure F. T. 1962; The amino acid pool in Escherichia coli. Bacteriological Reviews 26:292–335
    [Google Scholar]
  6. Burston D., Matthews D. M. 1972; Intestinal transport of dipeptides containing acidic and basic l-amino acids and a neutral d-amino acid. Chemical Science 42:4P
    [Google Scholar]
  7. Cascieri T., Mallette M. F. 1976; Intracellular peptide hydrolysis by Pseudomonas putida and Pseudomonas maltophilia. Journal of General Microbiology 92:296–303
    [Google Scholar]
  8. Cohen G. N., Rickenberg H. V. 1956; Concentration specifique réversible des amino acides chez Escherichia coli. Annales de l’Institut Pasteur 91:693–720
    [Google Scholar]
  9. Fickel T. E., Gilvarg C. 1973; Transport of impermeant substances in E. coli by way of oligopeptide permease. Nature New Biology 241:161–163
    [Google Scholar]
  10. Fowden L., Lewis D., Tristram H. 1967; Toxic amino acids: their action as antimetabolites. Advances in Enzymology 29:89–163
    [Google Scholar]
  11. Gale E. F. 1945; The arginine, ornithine and carbon dioxide requirements of streptococci (Lancefield group D) and the relation to arginine dihydrolase activity. British Journal of Pathology 26:225–233
    [Google Scholar]
  12. Guardiola J., De Felice M., Klopotowski T., Iaccarino M. 1974; Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12. Journal of Bacteriology 117:393–405
    [Google Scholar]
  13. Johnson G. G., Morris J. M., Berk R. S. 1967; The extracellular protease from Pseudomonas aeruginosa exhibiting elastase activity. Canadian Journal of Microbiology 13:711–719
    [Google Scholar]
  14. Kessel D., Lubin M. 1963; On the distinction between peptidase activity and peptide transport. Biochimica et biophysica acta 71:656–663
    [Google Scholar]
  15. Kihara H., Klatt O. A., Snell E. E. 1952; Peptides and bacterial growth. III. Utilization of tyrosine peptides by Streptococcus faecalis. Journal of Biological Chemistry 197:801–807
    [Google Scholar]
  16. Kustu S. G., Ames G. F. 1973; The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. Journal of Bacteriology 116:107–113
    [Google Scholar]
  17. Lessie T. G., Neidhardt F. C. 1967; Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. Journal of Bacteriology 93:1800–1810
    [Google Scholar]
  18. Liu P. V. 1966; The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. II. Effects of lecithinase and protease. Journal of Infectious Diseases 116:112–116
    [Google Scholar]
  19. Merrifield R. B., Woolley D. W. 1956; The synthesis of l-seryl-l-histidyl-l-leucyl-l-valyl-l-glutamic acid, a peptide with strepogenin activity. Journal of the American Chemical Society 78:4646–4649
    [Google Scholar]
  20. Morihara K., Tsuzuki H., Oka T. 1968; Comparison of the specificities of various natural proteinases from microorganisms. Archives of Biochemistry and Biophysics 123:572–588
    [Google Scholar]
  21. Naider F., Becker J. M., Katzir-Katchalski E. 1974; Utilization of methionine-containing peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae. Journal of Biological Chemistry 249:9–20
    [Google Scholar]
  22. Payne J. W. 1968; Oligopeptide transport in Escherichia coli. Specificity with respect to side chain and distinction from dipeptide transport. Journal of Biological Chemistry 243:3395–3403
    [Google Scholar]
  23. Payne J. W. 1973; Peptide utilization in Escherichia coli: studies with peptides containing β-alanyl residues. Biochemica et biophysica acta 298:469–478
    [Google Scholar]
  24. Payne J. W. 1974; Peptide transport in Escherichia coli: permease specificity towards terminal amino group substituents. Journal of General Microbiology 80:269–276
    [Google Scholar]
  25. Payne J. W., Gilvarg C. 1968a; The role of the terminal carboxyl group in peptide transport in Escherichia coli. Journal of Biological Chemistry 243:335–340
    [Google Scholar]
  26. Payne J. W., Gilvarg C. 1968b; Size restriction on peptide utilization in Escherichia coli. Journal of Biological Chemistry 243:6291–6299
    [Google Scholar]
  27. Payne J. W., Gilvarg C. 1971; Peptide transport. Advances in Enzymology 35:187–244
    [Google Scholar]
  28. Sheehan J. C., Preston J., Cruickshank P. A. 1965; A rapid synthesis of oligopeptide derivatives without isolation of intermediates. Journal of the American Chemical Society 87:2492–2493
    [Google Scholar]
  29. Smith R. L., Archer E. G., Dunn F. W. 1970; Uptake of [11C]-labelled tri-, tetra-, and pentapeptides of phenylalanine and glycine by Escherichia coli. Journal of Biological Chemistry 245:2967–2971
    [Google Scholar]
  30. Stanier R. Y., Palleroni N. J., Doudorofe M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  31. Waksman S. A. 1932 Principles of Soil Microbiology p. 682 Baltimore: Williams and Wilkins.;
    [Google Scholar]
  32. Wolfinbarger L., Marzluf G. A. 1974; Peptide utilization by amino acid auxotrophs of Neurospora crassa. Journal of Bacteriology 119:371–378
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-92-2-283
Loading
/content/journal/micro/10.1099/00221287-92-2-283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error