1887

Abstract

SUMMARY: The isolation and properties of a mutant of that is totally unable to take up and utilize gluconate are described. Genetical analysis shows this phenotype to be associated with two lesions. One phenotype, designated GntM, is the result of a mutation in a gene co-transducible with the other, designated GntS, is the result of a mutation in a gene () co-transducible with The GntS-phenotype differs little from that of wild-type cells, but GntM GntS organisms grow on gluconate only after a prolonged lag and form a gluconate uptake system that is strongly repressed by pyruvate. Moreover, such GntM mutants readily give rise to further mutants that form a gluconate uptake system, gluconate kinase and 6-phosphogluconate dehydratase constitutively; in partial diploids, this constitutivity is recessive to the inducible character. It is postulated that the GntM phenotype is due to malfunction of a negative control gene , and that specifies the activity of a gluconate uptake system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-90-2-321
1975-10-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/90/2/mic-90-2-321.html?itemId=/content/journal/micro/10.1099/00221287-90-2-321&mimeType=html&fmt=ahah

References

  1. Bächi B., Kornberg H. L. 1975; Utilization of gluconate by Escherichia coli. A role of adenosine 3′,5′-cyclic monophosphate in the induction of gluconate catabolism. Biochemical Journal 150:123–128
    [Google Scholar]
  2. Brice C. B., Kornberg H. L. 1967; Location of a gene specifying phosphopyruvate synthase activity on the genome of Escherichia coli, k12. Proceedings of the Royal Society B168281–292
    [Google Scholar]
  3. Cohen S. S. 1951; Gluconokinase and the oxidative path of glucose-6-phosphate utilization. Journal of Biological Chemistry 189:617–628
    [Google Scholar]
  4. Eisenberg R. C., Dobrogosz W. J. 1967; Gluconate metabolism in Escherichia coli. Journal of Bacteriology 93:941–949
    [Google Scholar]
  5. Englesberg E., Squires C., Meronk F. 1969; The l-arabinose operon in Escherichia coli B/r: a genetic demonstration of two functional states of the product of a regulator gene. Proceedings of the National Academy of Sciences of the United States of America 621100–1107
    [Google Scholar]
  6. Essenberg R. C., Kornberg H. L. 1975; Energy coupling in the uptake of hexose phosphates by Escherichia coli. Journal of Biological Chemistry 250:939–945
    [Google Scholar]
  7. Faik P., Kornberg H. L. 1973; Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Letters 32:260–264
    [Google Scholar]
  8. Fraenkel D. G., Banerjee S. 1972; Deletion mapping of zwf the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase, in Escherichia coli. Genetics 71:481–489
    [Google Scholar]
  9. Hung A., Orozco A., Zwaig N. 1970; Evidence for two gluconokinase activities in Escherichia coli. Bacteriological Proceedings Abstract p. 148
    [Google Scholar]
  10. Kornberg H. L., Smith J. 1969; Genetic control of hexose phosphate uptake by Escherichia coli. Nature; London: 2241261–1262
    [Google Scholar]
  11. Kornberg H. L., Soutar A. K. 1973; Utilization of gluconate by Escherichia coli. Induction of gluconate kinase and 6-phosphogluconate dehydratase activities. Biochemical Journal 134:489–498
    [Google Scholar]
  12. Miller J. H. 1972 Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  13. Monod J. 1956; Remarks on the mechanism of enzyme induction. In Enzymes: Units of Biological Structure and Function pp. 7–28 Gaebler O. H. Edited by New York: Academic Press.;
    [Google Scholar]
  14. Morgan M. J., Kornberg H. L. 1969; Regulation of sugar accumulation by Escherichia coli. FEBS Letters 3:53–56
    [Google Scholar]
  15. Nagel De Zwaig R., Zwaig N., Istúriz T., Sanchez R. S. 1973; Mutations affecting gluconate metabolism in Escherichia coli. Journal of Bacteriology 114:463–468
    [Google Scholar]
  16. Pouysségur J. M., Faik P., Kornberg H. L. 1974; Utilization of gluconate by Escherichia coli. Uptake of d-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. Biochemical Journal 140:193–203
    [Google Scholar]
  17. Robin A., Kepes A. 1973; The mechanism of maintenance of electroneutrality during the transport of gluconate by E. coli. FEBS Letters 36:133–136
    [Google Scholar]
  18. Roseman S. 1969; The transport of carbohydrates by a bacterial phosphotransferase system. Journal of General Physiology 54:138S–180S
    [Google Scholar]
  19. Taylor A. L., Trotter C. D. 1972; Linkage map of Escherichia coli strain K-12. Bacteriological Reviews 36:504–524
    [Google Scholar]
  20. Willson C., Perrin D., Cohn M., Jacob F., Monod J. 1964; Non-inducible mutants of the regulator gene in the ‘lactose’ system of Escherichia coli. Journal of Molecular Biology 8:582–592
    [Google Scholar]
  21. Yu M. T., Kaney A. R., Atwood K. C. 1965; Genetic mapping of fructose-1,6-diphosphatase in Escherichia coli. Journal of Bacteriology 90:1150–1152
    [Google Scholar]
  22. Zablotny R., Fraenkel D. G. 1967; Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase. Journal of Bacteriology 93:1579–1581
    [Google Scholar]
  23. Zwaig N., Nagel De Zwaig R., Istúriz T., Wecksler M. 1973; Regulatory mutations affecting the gluconate system in Escherichia coli. Journal of Bacteriology 114:469–473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-90-2-321
Loading
/content/journal/micro/10.1099/00221287-90-2-321
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error