1887

Abstract

SUMMARY: Four strains of Desulfovibrio each, excreted pyruvate to a constant level during growth; it was re-absorbed when the substrate (lactate) was exhausted. Malate, succinate, fumarate and malonate also accumulated during growth.

One of the strains (Hildenborough) excreted -ketoglutarate as well as pyruvate when incubated in nitrogen-free medium; the former was re-absorbed on addition of NHCl. In a low-lactate nitrogen-free medium, strain Hildenborough rapidly re-absorbed the pyruvate initially excreted, but did not re-absorb the -keto-glutarate. Arsenite (1 m) prevented the accumulation of -ketoglutarate; 1 m-malonate did not affect the accumulation of keto acids.

Isocitrate dehydrogenase activity (NAD-specific) in all strains was lower than NADP-specific glutamate dehydrogenase activity. -Ketoglutarate dehydrogenase could not be detected in any strain. NADPH oxidase activity was demonstrated.

This and previous work indicate that a tricarboxylic acid pathway from citrate to -ketoglutarate exists in spp., and that succinate can be synthesized via malate and fumarate; however, an intact tricarboxylic acid cycle is evidently not present. The findings are compared with observations on biosynthetic pathways in Clostridia, obligate lithotrophs, phototrophs, and methylotrophs, and various facultative bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-90-2-286
1975-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/90/2/mic-90-2-286.html?itemId=/content/journal/micro/10.1099/00221287-90-2-286&mimeType=html&fmt=ahah

References

  1. Aleem M. I. H. 1968; Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis. Biochimica et biophysica acta 162:338–347
    [Google Scholar]
  2. Amarasingham C. R., Davis B. D. 1965; Regulation of α-ketoglutarate dehydrogenase formation in Escherichia coli. Journal of Biological Chemistry 240:3664–3668
    [Google Scholar]
  3. Barton L. L., Le Gall J., Peck H. D. 1973 In Horizons of Bioenergetics p. 33 San Pietro A., Gest H. Edited by New York: Academic Press.;
    [Google Scholar]
  4. Barton L. L., Peck H. D. 1971; Phosphorylation coupled to electron transfer between lactate and fumarate in cell-free extracts of the sulfate-reducing anaerobe,. Desulfovibrio gigas. Bacteriological Proceedings149
    [Google Scholar]
  5. Colby J., Zatman L. J. 1972; Hexose phosphate synthase and tricarboxylic acid cycle enzymes in bacterium 4B6, an obligate methylotroph. Biochemical Journal 128:1373–1376
    [Google Scholar]
  6. Dahl J. S., Mehta R. J., Hoare D. S. 1972; New obligate methylotroph. Journal of Bacteriology 109:916–921
    [Google Scholar]
  7. Fuller R. C., Smillie R. M., Sisler E. C., Kornberg H. L. 1961; Carbon metabolism in Chromatium. Journal of Biological Chemistry 236:2140–2149
    [Google Scholar]
  8. Germano G. J., Anderson K. E. 1968; Purification and properties of l-alanine dehydrogenase from Desulfovibrio desulfuricons. Journal of Bacteriology 96:55–60
    [Google Scholar]
  9. Goodwin T. W., Williams G. R. 1952; Studies on vitamin A. XVIII. The effect of vitamin A deficiency on the pyruvate and α-ketoglutarate levels of rat blood. Biochemical Journal 51:708–714
    [Google Scholar]
  10. Gottschalk G. 1968; The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. European Journal of Biochemistry 5:346–351
    [Google Scholar]
  11. Grossman J. P., Postgate J. R. 1955; The metabolism of malate and certain other compounds by Desulphovibrio desulphuricans. Journal of General Microbiology 12:429–445
    [Google Scholar]
  12. Hager L. P. 1953 Ph.D. thesis; University of Illinois.:
  13. Hager L. P., Kornberg H. L. 1961; On the mechanism of α-oxoglutarate oxidation in Escherichia coli. Biochemical Journal 78:194–198
    [Google Scholar]
  14. Harman M. A., Doelle H. W. 1969; Gas chromatographic separation and determination of microquantities of the esters of the tricarboxylic acid cycle acids and related compounds. Journal of Chromatography157–169
    [Google Scholar]
  15. Hatchikian E. C., Le Gall J. 1970; Étude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-reductrices. Annales de l’Institut Pasteur 118:125–142
    [Google Scholar]
  16. Johnson E. J., Abraham S. 1969; Assimilation and metabolism of exogenous organic compounds by the strict autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus. Journal of Bacteriology 97:1198–1208
    [Google Scholar]
  17. Macpherson R., Miller J. D. A. 1963; Nutritional studies on Desulfovibrio desulfur icons using chemically defined media. Journal of General Microbiology 31:365–373
    [Google Scholar]
  18. Miller J. D. A., Neumann P. M., Elford L., Wakerley D. S. 1970; Malate dismutation by Desulfovibrio. Archiv für Mikrobiologie 71:214–219
    [Google Scholar]
  19. Miller J. D. A., Wakerley D. S. 1966; Growth of sulphate-reducing bacteria by fumarate dismutation. Journal of General Microbiology 43:101–107
    [Google Scholar]
  20. Neumann P. M. 1967 Investigations into the carbon metabolism and growth inhibition of sulphate-reducing bacteria. M.Sc. thesis University of Manchester.;
    [Google Scholar]
  21. Pearce J., Leach C. K., Carr N. G. 1969; The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. Journal of General Microbiology 55:371–378
    [Google Scholar]
  22. Peeters T. L., Liu M. S., Aleem M. I. H. 1970; The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus A2. Journal of General Microbiology 64:29–35
    [Google Scholar]
  23. Rosenberg J. C., Rush B. F. 1966; An enzymatic-spectrophotometric determination of pyruvate and lactic acid in blood. Methodologic aspects. Clinical Chemistry 12:299–307
    [Google Scholar]
  24. Shiio I., Otsuka S., Takahashi M. 1961; Significance of α-ketoglutaric dehydrogenase on the glutamic acid formation in Brevibacterium flavum. Journal of Biochemistry 50:164–165
    [Google Scholar]
  25. Smith A. J., London J., Stanier R. Y. 1967; Biochemical basis of obligate autotrophy in the blue-green algae and thiobacilli. Journal of Bacteriology 94:972–983
    [Google Scholar]
  26. Stern J. R., Bambers G. 1966; Glutamate biosynthesis in anaerobic bacteria. I. The citrate pathways of glutamate synthesis in Clostridium kluyveri. Biochemistry 5:1113–1118
    [Google Scholar]
  27. Tabita R., Lundgren D. G. 1971; Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. Journal of Bacteriology 108:334–342
    [Google Scholar]
  28. Von Tigerstrom M., Campbell J. J. R. 1966; Accumulation of α-ketoglutarate by suspensions of Pseudomonas aeruginosa. Canadian Journal of Microbiology 12:1005–1013
    [Google Scholar]
  29. Trudinger P. A., Kelly D. P. 1968; Reduced nicotinamide adenine dinucleotide oxidation by Thiobacillus neapolitanus and Thiobacillus strain c. Journal of Bacteriology 95:1962–1963
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-90-2-286
Loading
/content/journal/micro/10.1099/00221287-90-2-286
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error