1887

Abstract

SUMMARY: Synthesis of the aliphatic amidase was repressed severely by succinate and malate and less severely by glucose, acetate or lactate. Amidase synthesis in inducible and constitutive strains was stimulated by cyclic AMP, which also gave partial relief to catabolite repression produced by the addition of lactate to cultures growing in pyruvate medium. Mutants which were resistant to catabolite repression were isolated from succinate + lactamide medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-90-1-81
1975-09-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/90/1/mic-90-1-81.html?itemId=/content/journal/micro/10.1099/00221287-90-1-81&mimeType=html&fmt=ahah

References

  1. Aboud M., Burger M. 1971; Cyclic 3′,5′ adenosine monophosphate-phosphodiesterase and the release of catabolite repression of β-galactosidase by exogenous cyclic 3′,5′ adenosine monophosphate in Escherichia coli. Biochemical and Biophysical Research Communications 43:174–182
    [Google Scholar]
  2. Botsford J. L., Demoss R. D. 1971; Catabolite repression of tryptophanase in Escherichia coli. Journal of Bacteriology 105:303–312
    [Google Scholar]
  3. Brammar W. J. 1965 The control of amidase synthesis in Pseudomonas aeruginosa by induction and repression mechanisms. Ph.D. thesis University of London:
    [Google Scholar]
  4. Brammar W. J., Clarke P. H. 1964; Induction and repression of Pseudomonas aeruginosa amidase. Journal of General Microbiology 37307–319
    [Google Scholar]
  5. Brammar W. J., Clarke P. H., Skinner A. J. 1967; Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa amidase system. Journal of General Microbiology 47:87–102
    [Google Scholar]
  6. Brill W., Magasanik B. 1969; Genetic and metabolic control of histidase and urocanase in Salmonella typhimurium, strain 15-59. Journal of Biological Chemistry 244:5392–5402
    [Google Scholar]
  7. Brown J. E., Brown P. R., Clarke P. H. 1969; Butyramide-utilizing mutants of Pseudomonas aeru-ginosa which produce an amidase with altered substrate specificity. Journal of General Microbiology 57:273–285
    [Google Scholar]
  8. Brown J. E., Clarke P. H. 1970; Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide. Journal of General Microbiology 64:329–342
    [Google Scholar]
  9. Clarke P. H., Houldsworth M. A., Lilly M. D. 1968; Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa 8602 in continuous culture. Journal of General Microbiology 51:225–234
    [Google Scholar]
  10. De Crombrugghe B., Chen B., Anderson W., Nissley P., Gottesman M., Pastan I., Perlman R. L. 1971; Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nature New Biology 230:139–142
    [Google Scholar]
  11. Higgins S. J., Mandelstam J. 1972; Regulation of pathways degrading aromatic substrates in Pseudo-monas putida. Enzymic response to binary mixtures of substrates. Biochemical Journal 126:901–916
    [Google Scholar]
  12. Holloway B. W. 1955; Genetic recombination in Pseudomonas aeruginosa. Journal of General Micro-biology 13:572–581
    [Google Scholar]
  13. Holloway B. W., Egan J. B., Monk M. 1960; Lysogeny in Pseudomonas aeruginosa. Australian Journal of Experimental Biology 38:321–330
    [Google Scholar]
  14. Loomis W. F., Magasanik B. 1965; Genetic control of catabolite repression of the lac operon in Escherichia coli. Biochemical and Biophysical Research Communications 20:230–234
    [Google Scholar]
  15. Moses V., Prevost C. 1966; Catabolite repression of β-galactosidase synthesis in Escherichia coli. Biochemical Journal 100:336–353
    [Google Scholar]
  16. Ng F.M.-W., Dawes E. A. 1973; Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochemical Journal 132:129–140
    [Google Scholar]
  17. Ornston L. N. 1971; Regulation of catabolite pathways in Pseudomonas. Bacteriological Reviews 35:87–116
    [Google Scholar]
  18. Pastan I., Perlman R. L. 1968; The role of the lac promotor locus in the regulation of β-galactosidase synthesis by cyclic 3′,5′-adenosine monophosphate. Proceedings of the National Academy of Sciences of the United States of America 61:1336–1342
    [Google Scholar]
  19. Skinner A. J., Clarke P. H. 1968; Acetate and acetamide mutants of Pseudomonas aeruginosa 8602. Journal of General Microbiology 50:183–194
    [Google Scholar]
  20. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  21. Stevenson I. L., Mandelstam J. 1965; Induction and multisensitive end-product repression in two converging pathways degrading aromatic substances in Pseudomonas fluorescens. Biochemical Journal 96:354–362
    [Google Scholar]
  22. Sutherland E. W., Rall T. W. 1958; Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. Journal of Biological Chemistry 232:1077–1091
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-90-1-81
Loading
/content/journal/micro/10.1099/00221287-90-1-81
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error