Transduction of Flagellar Characters in Salmonella Free

Abstract

SUMMARY: Phage lysates of a salmonella strain can transduce flagellar characters from that strain to a second strain which absorbs the phage. Non-motile strains treated with lysates o other strains produced stable motile forms detected as spreading swarms in semi-solid agar.

O strains of known species produced swarms with the H antigens characteristic of theirown species, and the species of previously untypable O isolates could be inferred from the H antigens of their induced swarms.

The production of swarms by O strains when treated with lysates of other O strains divided nine O strains into six interacting groups; there are therefore at least six non-homologous genetic factors, mutation of any of which may cause absence of flagella, thus masking other genes which control H antigenic specificity.

Two flagellated but non-motile strains produced motile forms when treated with lysates of other strains, or of each other. At least two genes concerned with locomotor function are thus recognized. All the motile derivatives of one O strain spread very slowly through semi-solid agar; the ability to spread rapidly could be transduced to them by a second exposure to a lysate.

In exceptional instances two flagellar characters were simultaneously transduced: three O strains sometimes acquired a flagellar antigen from the donor strain at the same time as the H character; another O strain sometimes acquired simultaneously flagellation and the slow-spreading character.

There are therefore many distinct genes controlling the presence, antigenic character and function of the flagella. They may form part of an ordered gene array in which pairs of genes which are sometimes simultaneously transduced by a single phage particle are presumably closely linked.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-9-3-410
1953-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/9/3/mic-9-3-410.html?itemId=/content/journal/micro/10.1099/00221287-9-3-410&mimeType=html&fmt=ahah

References

  1. Alexander H, Leidy G. 1951; Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells.. J.exp. Med. 93:345
    [Google Scholar]
  2. Andrewes F.W. 1922; Studies in group-agglutination. I. The Salmonella group and its antigenic structure.. J.Path. Bact. 25:505
    [Google Scholar]
  3. Andrewes F.W. 1925; Studies in group agglutination. II. The absorption of agglutinin in the diphasic salmonellas.. J. Path. Bact. 28:345
    [Google Scholar]
  4. Avery O.T., Macleod C.M., Mccarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types.. J. exp. Med. 79:137
    [Google Scholar]
  5. Boyd J.S.K. 1950; The symbiotic bacteriophages of Salmonella typhi-murium. . J. Path. Bact. 62:501
    [Google Scholar]
  6. Boyd J.S.K. 1951; ‘Excessive dose’ phenomenon in virus infections.. Nature; Lond.: 1671061
    [Google Scholar]
  7. Boyd J.S.K., Parker M.T., Mair N.S. 1951; Symbiotic bacteriophage as a ‘Marker’ in the identification of strains of Salmonella typhi-murium. . J. Hyg., Comb. 49:442
    [Google Scholar]
  8. Braun H. 1918; Das Wesen der Weil-Felix’schen Reaktion auf Fleckfieber.. Herl, klin. Wschr. 55:637
    [Google Scholar]
  9. Colquhoun D.B., Kirkpatrick J. 1932; The isolation of motile organisms from apparently non-motile cultures of B. typhosus, B. proteus, B. pestis, B. melitensis, etc.. J. Path. Bact. 35:367
    [Google Scholar]
  10. De Haan H. 1933; Inheritance of chlorophyll deficiencies.. Bibliogr. genet. 10:357
    [Google Scholar]
  11. Edwards P.R., Bruner D.W. 1942; Serological identification of Salmonella cultures.. Circ. Ky agric. Exp. Sta.54
    [Google Scholar]
  12. Edwards P.R., Bruner D.W. 1946; Notes on monophasic Salmonella cultures and their use in the production of diagnostic serums.. J. Bact. 52:493
    [Google Scholar]
  13. Edwards P.R., Moran A.B., Bruner D.W. 1946; Flagella and flagellar antigens in ‘non-motile’ Salmonella cultures.. Proc. Soc. exp. Biol., N.Y. 62296
    [Google Scholar]
  14. Ephrussi-Taylor H. 1951a; Transformations allogénes du pneumocoque.. Exp. Cell Res. 2:589
    [Google Scholar]
  15. Ephrussi-Taylor H. 1951b; Genetic aspects of transformations of pneumococci.. Cold Spr. Harb. Symp. quant. Biol. 16:445
    [Google Scholar]
  16. Felix A. 1930; The qualitative serum diagnosis of enteric fevers.. Lancet i:505
    [Google Scholar]
  17. Felix A. 1951; Laboratory control of the enteric fevers.. Brit. med. Bull. 7:153
    [Google Scholar]
  18. Felix A. 1952a; The Vi antigen of Salmonella paratyphi-A. . J. Hyg., Camb. 50:540
    [Google Scholar]
  19. Felix A. 1952b; The Vi antigen of Salmonella paratyphi-B. . J. Hyg., Camb. 50:550
    [Google Scholar]
  20. Felix A., Callow B.R. 1943; Typing of paratyphoid-B bacilli by means of Vi bacteriophage.. Brit. med. J. ii:127
    [Google Scholar]
  21. Felix A., Callow B.R. 1951; Paratyphoid-B Vi-phage Typing.. Lancet ii:10
    [Google Scholar]
  22. Felix A., Pitt R.M. 1951; The pathogenic and immunogenic activities of Salmonella typhi in relation to its antigenic constituents.. J. Hyg., Camb. 49:92
    [Google Scholar]
  23. Friewer F.I., Leifson E. 1952; Non-motile flagellated variants of Salmonella typhi-murium. . J. Path. Bact. 64:223
    [Google Scholar]
  24. Griffith F. 1928; The significance of pneumococcal types.. J. Hyg., Camb. 27:113
    [Google Scholar]
  25. Hirsch W. 1947; Anew bacterial variant: the non-motile H form.. J. Hyg., Camb. 45:417
    [Google Scholar]
  26. Kauffmann F. 1934; Über serologische und kulturelle Variant Paratyphus-B und Mäusetyphus-Bacillen.. Z. Hyg. Infekt-Kr. 116:368
    [Google Scholar]
  27. Kauffmann F. 1939; Die serologische Salmonella-diagnose.. Acta path, microbial, scand. 16:417
    [Google Scholar]
  28. Kauffmann F. 1947; On the serology of the Salmonella V antigen.. Acta path, microbial, scand. 24:591
    [Google Scholar]
  29. Kauffmann F. 1951 Enterobaderiaceae. Copenhagen: Einar Munksgaard;
    [Google Scholar]
  30. Lederberg E.M. 1952; Allelic relationships and reverse mutation in Escherichia coli. . Genetics 37:649
    [Google Scholar]
  31. Lederberg J., Lederberg E.M., Zinder N.D., Lively E.R. 1951; Recombination analysis of bacterial heredity.. Cold Spr. Harb. Symp. quant. Biol. 16:413
    [Google Scholar]
  32. Leidy G., Hahn E., Alexander H.E. 1953; In vitro production of new types of Haemophilus influenzae. . J. exp. Med. 97:467
    [Google Scholar]
  33. Lewin R.A. 1952; Ultraviolet induced mutations in Chlamydomonas moewusii Gerloff.. J. gen.Microbiol 6:233
    [Google Scholar]
  34. Lilleengen K. 1948; Typing of Salmonella typhi-murium by means of bacteriophage.. Acta path, microbiol. scand. Suppl. 77:
    [Google Scholar]
  35. Lwoff A. 1953; The nature of phage reproduction. . In The Nature of Virus Multiplication. Symp. Soc. gen. Microbiol. 1952. p. 149
    [Google Scholar]
  36. Saleeonexla Sub-Commitee 1949; Third report of the Salmonella sub-committee of the Nomenclature Committee.. Congr. int. Microbiol. Copenhagen 1947 p. 617
    [Google Scholar]
  37. Schütze H. 1930; The importance of somatic antigen in the production of Aer-trycke and Gaertner immunity in mice.. Brit. J. exp. Path. 11:34
    [Google Scholar]
  38. Sertic V., Boulgakov N.A. 1936; Bactériophages spécifiques pour des variétés bactériennes flagellées.. C.R. Soc. Biol., Paris 123:887
    [Google Scholar]
  39. Stocker B.A.D. 1949; Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium. . J. Hyg., Comb. 47:398
    [Google Scholar]
  40. Zinder N.D., Lederberg J. 1952; Genetic exchange in Salmonella. . J. Bact. 64:679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-9-3-410
Loading
/content/journal/micro/10.1099/00221287-9-3-410
Loading

Data & Media loading...

Most cited Most Cited RSS feed