1887

Abstract

SUMMARY: Nineteen mutants of responding to either cysteine or methionine (cym) have been identified amongst cysteine () and methionine () auxotrophs. Their growth responses to known intermediates in the related pathways of cysteine and methionine biosynthesis and complementation patterns in abortive transduction tests divided the mutants into six groups. Results of conjugation, cotransduction and deletion mapping experiments substantiated these groups, each of which carried a lesion within known genes. Enzyme assays on cym mutants from five of the six groups confirmed their gene deficiencies. Growth response and enzyme assay data were not consistent with cym mutants being leaky mutants (spared by methionine). None of eight cym mutants tested were able to convert [S]methionine into [S]cysteine. Selenate specifically inhibits the early enzymes of cysteine synthesis. In cym mutants this inhibition was relieved by cysteine but not by methionine, indicating that cym mutants require active enzymes for growth on methionine. There was evidence that methionine stimulated activity of enzymes in a cym mutant. Resistance to inhibition by 1,2,4-triazole results in reduced levels of the -acetyl serine sulphydrylase. In cym mutants triazole resistance gave unstable suppression of the cym phenotype. Cym mutants may result from mutation in regulatory regions common to each of the genes, with the precise role of methionine as yet unknown.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-89-2-353
1975-08-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/89/2/mic-89-2-353.html?itemId=/content/journal/micro/10.1099/00221287-89-2-353&mimeType=html&fmt=ahah

References

  1. Ahmed A. 1973; Mechanism of methionine biosynthesis in Escherichia coli. I. The role of methionine, S-adenosylmethionine and methionyl-transfer ribonucleic acid in repression. Molecular and General Genetics 123:299–324
    [Google Scholar]
  2. Bhuvaneswaran C., Sreenivasan A., Rege D. V. 1964; Effect of cysteine on respiration and catalase synthesis by Saccharomyces cerevisiae. Biochemical Journal 92:504–508
    [Google Scholar]
  3. Chater K. F. 1970; Dominance of the wild-type alleles of methionine regulatory genes in Salmonella typhimurium. Journal of General Microbiology 63:95
    [Google Scholar]
  4. Clowes R. C. 1958; Nutritional studies of cysteineless mutants of Salmonella typhimurium. Journal of General Microbiology 18:140–153
    [Google Scholar]
  5. Datta P. 1967; Regulation of homoserine biosynthesis by l-cysteine a terminal metabolite of a linked pathway. Proceedings of the National Academy of Sciences of the United States of America 58:635–641
    [Google Scholar]
  6. Delavier-Klutchko C., Flavin M. 1965; Enzymatic cleavage and synthesis of cystathionine in fungi and bacteria. Journal of Biological Chemistry 240:2537–2549
    [Google Scholar]
  7. Demerec M., Gillespie D. H., Mizobuchi K. 1963; Genetic structure of the cysC region of the Salmonella genome. Genetics 48:997–1009
    [Google Scholar]
  8. Dreyfuss J. 1964; Characterization of a sulphate- and thiosulphate-transporting system in Salmonella typhimurium. Journal of Biological Chemistry 239:2292–2297
    [Google Scholar]
  9. Dreyfuss J., Monty K. J. 1963; The biochemical characterization of cysteine requiring mutants of Salmonella typhimurium. Journal of Biological Chemistry 238:1019–1024
    [Google Scholar]
  10. Eisenstark A., Eisenstark R., Van Sickle A. 1965; Mutation of Salmonella typhimurium by nitroso- guanidine. Mutation Research 2:1–10
    [Google Scholar]
  11. Ellis R. J. 1964; A rapid assay for sulphite reductase. Biochimica et biophysica acta 85:335–338
    [Google Scholar]
  12. Feigl F. 1947 Qualitative Analysis by Spot Tests New York: Elsevier;
    [Google Scholar]
  13. Flavin M., Delavier-Klutchko C., Slaughter C. 1964; Succinic ester and amide of homoserine: some spontaneous and enzymatic reactions. Science; New York: 14350–52
    [Google Scholar]
  14. Hartman P. E., Hartman Z., Šerman B. 1960; Complementation mapping by abortive transduction of histidine requiring Salmonella mutants. Journal of General Microbiology 22:354–368
    [Google Scholar]
  15. Hilz H., Kittler M., Knape G. 1959; Die Reduktion von Sulfat in der Leife. Biochemische Zeitschrift 332:151–166
    [Google Scholar]
  16. Hobson A. C. 1974; The regulation of methionine and S-adenosylmethionine biosynthesis and utilization in mutants of Salmonella typhimurium with defects in S-adenosylmethionine synthetase. Molecular and General Genetics 131:263–273
    [Google Scholar]
  17. Hockenhull D. J. D. 1949; The sulphur metabolism of mould fungi. The use ofbiochemical mutant strains of Aspergillus nidulans in elucidating the biosynthesis of cysteine. Biochimica et biophysica acta 3:325–335
    [Google Scholar]
  18. Hulanicka D. 1972; Resistance to sulphate analogues in Salmonella typhimurium. Acta biochimica polonica 19:367–375
    [Google Scholar]
  19. Hulanicka D., Klopotowski T. 1972; Mutants of Salmonella typhimurium resistant to triazole. Acta biochimica polonica 19:251–260
    [Google Scholar]
  20. Hulanicka D., Klopotowski T., Smith D. A. 1972; The effect of triazole on cysteine biosynthesis in Salmonella typhimurium. Journal of General Microbiology 72:291–301
    [Google Scholar]
  21. Jones-Mortimer M. C. 1968; Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli k12. Biochemical Journal 110:597–602
    [Google Scholar]
  22. Kredich N. M. 1971; Regulation of l-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulphur sources and O-acetyl-l-serine on gene expression. Journal of Biological Chemistry 246:3474–3484
    [Google Scholar]
  23. Lampen J. O., Roepke R. R., Jones M. J. 1947; Studies on the sulphur metabolism of E. coli. III. Mutant strains of E. coli unable to use sulphate for their complete sulphur requirements. Archives of Biochemistry 13:55–66
    [Google Scholar]
  24. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951 In Methods in Enzymology 3 Colowick S. P., Kaplan N. O. Edited by New York: Academic Press;
    [Google Scholar]
  25. Margolis D., Mandl R. H. 1958; A system for separating sulphur and non-sulphur amino compounds by two-dimensional paper chromatography. Contributions to the Boyce-Thompson Institute 19:509–512
    [Google Scholar]
  26. Mizobuchi K., Demerec M., Gillespie D. H. 1962; Cysteine mutants of Salmonella typhimurium. Genetics 47:1617–1627
    [Google Scholar]
  27. Moore S., Stein W. H. 1963; Chromatographic determination of amino-acids by the use of automatic recording equipment. In Methods in Enzymology 6 Colowick S. P., Kaplan N. O. Edited by New York: Academic Press;
    [Google Scholar]
  28. Nagy Z., Kari C., Hernádi S. 1969; Growth of Escherichia coli cells in the presence of cysteine on sulphate-deficient media. Archiv für Mikrobiologie 65:391–398
    [Google Scholar]
  29. Pardee A. B., Prestidge L. S. 1966; Cell-free activity of a sulphate binding site involved in active transport. Proceedings of the National Academy of Sciences of the United States of America 55:189–19
    [Google Scholar]
  30. Pasternak C. A. 1962; Sulphate activation and its control in Escherichia coli and Bacillus subtilis. Biochemical Journal 85:44–49
    [Google Scholar]
  31. Postgate J. R. 1963; The examination of sulphur auxotrophs: a warning. Journal of General Microbiology 30:481–484
    [Google Scholar]
  32. Qureshi M. A. 1968 Cysteine-methionine mutants of Salmonella typhimurium: physiological and genetical studies M.Sc. thesis; University of Birmingham.:
    [Google Scholar]
  33. Qureshi M. A. 1971 Genetical and biochemical aspects of the relationship between cysteine and methionine biosynthesis in Salmonella typhimurium Ph.D. thesis; University of Birmingham.:
    [Google Scholar]
  34. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1955 Studies of Biosynthesis in E. coli Publication no. 607 Carnegie Institution of Washington;
    [Google Scholar]
  35. Saedler H., Reif H. J., Hu S., Davidson D. 1974; IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Molecular and General Genetics 132:265–289
    [Google Scholar]
  36. Sanderson K. E. 1972; Linkage map of Salmonella typhimurium. , IV. Bacteriological Reviews 36:558–586
    [Google Scholar]
  37. Smith D. A. 1961; Some aspects of the genetics of methionine-less mutants of Salmonella typhimurium. Journal of General Microbiology 24:335–353
    [Google Scholar]
  38. Smith D. A. 1971; S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Advances in Genetics 16:141–165
    [Google Scholar]
  39. Smith D. A., Childs J. D. 1966; Methionine genes and enzymes of Salmonella typhimurium. Heredity 21:265–286
    [Google Scholar]
  40. Smith H. O., Levine M. 1967; A phage P22 gene controlling integration of prophage. Virology 31:207–216
    [Google Scholar]
  41. Smith I. 1958 Chromatographic Techniques - Clinical and Biochemical Applications London: Heinemann, Medical Books Ltd;
    [Google Scholar]
  42. Tonomura K., Novelli G. D. 1960; Cysteine inhibition of the release of repression of dihydroorotic acid dehydrogenase in E. coli. Biochemical and Biophysical Research Communications 2:31–34
    [Google Scholar]
  43. Whitehouse J. M., Smith D. A. 1973; Methionine and vitamin B12 repression and precursor induction in the regulation of homocysteine methylation in Salmonella typhimurium. Molecular and General Genetics 120:341–353
    [Google Scholar]
  44. Whitehouse J. M., Smith D. A. 1974; The involvement of methionine regulatory mutants in the suppression of B12-dependent homocysteine transmethylase (metH) mutants of Salmonella typhimurium. Molecular and General Genetics 129:259–267
    [Google Scholar]
  45. Wilson L. G., Bandurski R. S. 1958; Enzymatic reactions involving sulphate, sulphite, selenate and molybdate. Journal of Biological Chemistry 233:975–981
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-89-2-353
Loading
/content/journal/micro/10.1099/00221287-89-2-353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error