Isolation and Properties of a Phospholipid-hydrolysing Bacterium from Ovine Rumen Fluid Free

Abstract

SUMMARY: A bacterium which can rapidly degrade phospholipids has been isolated from the ovine rumen and tentatively identified as a non-cellulolytic strain of When the organism was grown in batch culture the phospholipase activity appeared during the late exponential phase, peaked 4 to 8 h after maximum culture turbidity had been reached, and then rapidly disappeared. Activity was associated both with the whole cells and the cell-free culture supernatant.

Phosphatidylcholine was degraded via lysolecithin to produce free fatty acids and glycerylphosphorylcholine, indicating phospholipase A + B activity. The activity was stimulated by the addition to the incubation medium of oleic acid or sodium dodecylsulphate. There was no requirement for divalent cations, but the presence of cysteine at 10 stimulated the activity many-fold even though the incubation was performed under an oxygen-free gas phase. Phosphatidylethanolamine and phosphatidylinositol were also attacked. The possible role of the organism in bringing about the degradation in the rumen of plant phospholipids in the sheep's diet is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-89-1-163
1975-07-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/89/1/mic-89-1-163.html?itemId=/content/journal/micro/10.1099/00221287-89-1-163&mimeType=html&fmt=ahah

References

  1. Abou Akkada A. R., Bartley E. E., Berube R., Fina L. R., Meyer R. M., Henricks D., Julius F. 1968; Simple method to remove completely ciliate protozoa of adult ruminants. Applied Microbiology 16:1475–1477
    [Google Scholar]
  2. Bangham A. D., Dawson R. M. C. 1959; The relation between the activity of a lecithinase and the electrophoretic charge of the substrate. Biochemical Journal 72:486–492
    [Google Scholar]
  3. Bangham A. D., Dawson R. M. C. 1960; The physiochemical requirements for the action of Penicillium notatum phospholipase B on unimolecular films of lecithin. Biochemical Journal 75:133–138
    [Google Scholar]
  4. Bartlett G. T. 1959; Phosphorus assay in column chromatography. Journal of Biological Chemistry 234:466–471
    [Google Scholar]
  5. Bryant M. P. 1959; Bacterial species of the rumen. Bacteriological Reviews 23:125–153
    [Google Scholar]
  6. Bryant M. P. 1963; Symposium on microbial digestion in ruminants: identification of groups of anaerobic bacteria active in the rumen. Journal of Animal Science 22:801–813
    [Google Scholar]
  7. Caldwell D. R., Bryant M. P. 1966; Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Applied Microbiology 14:794–801
    [Google Scholar]
  8. Chattergee G. C., Mitra S. 1962; Studies on phospholipid-splitting enzyme of Vibrio el Tor. Biochemical Journal 83:384–387
    [Google Scholar]
  9. Coleman G. S., Kemp P., Dawson R. M. C. 1971; The catabolism of phosphatidylethanolamine by the rumen protozoon Entodinium caudatum and its conversion into the N-(I-carboxyethyl) derivative. Biochemical Journal 123:97–104
    [Google Scholar]
  10. Dawson R. M. C. 1956; Studies on the phosphorylcholine of rat liver. Biochemical Journal 62:693–696
    [Google Scholar]
  11. Dawson R. M. C. 1959; Hydrolysis of lecithin and lysolecithin by rumen micro-organisms of the sheep. Nature; Lond.: 1831822–1823
    [Google Scholar]
  12. Dawson R. M. C. 1963; On the mechanism of action of phospholipase A. Biochemical Journal 88:414–423
    [Google Scholar]
  13. Dawson R. M. C. 1973; Specificity of enzymes involved in the metabolism of phospholipids. In Form and Function of Phospholipids 3 pp. 97–116 Ansell G. B., Hawthorne J. N., Dawson R. M. C. Edited by London: Elsevier.;
    [Google Scholar]
  14. Dawson R. M. C., Hauser H. 1967; On the mechanism of the stimulation by anionic amphipaths of lecithin hydrolysis by phospholipase B of Penicillium notatum. Biochimica et biophysica acta 137:518–524
    [Google Scholar]
  15. Dawson R. M. C., Hemington N. 1974a; Digestion of grass lipids and pigments in sheep rumen. British Journal of Nutrition 32:327–340
    [Google Scholar]
  16. Dawson R. M. C., Hemington N. 1974b; An inhibitor of phospholipase D in saliva. Biochemical Journal 143:247–430
    [Google Scholar]
  17. Dawson R. M. C., Kemp P. 1969a; The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochemical Journal 115:351–352
    [Google Scholar]
  18. Dawson R. M. C., Kemp P. 1969b; Biohydrogenation of dietary fats in ruminants. In Physiology of Digestion and Metabolism in the Ruminant pp. 504–518 Phillipson A. T. Edited by Newcastle-upon-Tyne: Oriel Press Ltd.;
    [Google Scholar]
  19. Doi O., Nojima S. 1973; Detergent-resistant phospholipase A1 and A2 in Escherichia coli. Journal of Biochemistry 71:667–674
    [Google Scholar]
  20. Epstein B., Shapiro B. 1959; Lecithinase and lysolecithinase of intestinal mucosa. Biochemical Journal 71:615–619
    [Google Scholar]
  21. Faruque A.J.M.O., Jarvis B. D. W., Hawke J. C. 1974; Contribution of plant lipases to the release of free fatty acids in the rumen. Journal of the Science of Food and Agriculture 25:1313–1328
    [Google Scholar]
  22. Garton G. A., Lough A. K., Vioque E. 1961; Glyceride hydrolysis and glycerol fermentation by sheep rumen contents. Journal of General Microbiology 25:215–225
    [Google Scholar]
  23. Hauser H., Dawson R. M. C. 1967; Stability of unimolecular films of 32P-labelled lecithin. Biochemical Journal 105:401–407
    [Google Scholar]
  24. Hayaishi O., Kornberg A. 1954; Metabolism of phospholipids by bacterial enzymes. Journal of Biological Chemistry 206:647–663
    [Google Scholar]
  25. Henderson C. 1971; A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. Journal of General Microbiology 65:81–89
    [Google Scholar]
  26. Hobson P. N. 1969; Rumen bacteria. In Methods in Microbiology 3B pp. 133–149 Norris J. R., Ribbons D. W. Edited by London and New York: Academic Press.;
    [Google Scholar]
  27. Hobson P. N. 1970; Rumen micro-organisms. Progress in Industrial Microbiology 9:41–77
    [Google Scholar]
  28. Hobson P. N., Mann S. O. 1961; The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. Journal of General Microbiology 25:227–240
    [Google Scholar]
  29. Hobson P. N., Mann S. O. 1971; Isolation of cellulolytic and lipolytic organisms from the rumen. In Isolation of Anaerobes Society of Applied Bacteriology, Technical Series 5 pp. 149–158 Shapton D. A., Board R. G. Edited by London: Academic Press.;
    [Google Scholar]
  30. Hungate R. E. 1966; The rumen bacteria. In The Rumen and its Microbes pp. 8–90 New York and London:: Academic Press.;
    [Google Scholar]
  31. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology 3B pp. 117–132 Norris J. R., Ribbons D. W. Edited by New York and London: Academic Press.;
    [Google Scholar]
  32. Jarvis B. D. W. 1968; Lysis of viable rumen bacteria in bovine rumen fluid. Applied Microbiology 16:714–723
    [Google Scholar]
  33. Lanchli A. 1969; Radioassay for β-emitters in biological materials using Cerenkov radiation. International Journal of Applied Radiation and Isotopes 20:265–270
    [Google Scholar]
  34. Latham M. J., Sharpe E. M. 1971; The isolation of anaerobic organisms from the bovine rumen. In Isolation of Anaerobes Society of Applied Bacteriology, Technical Series 5 pp. 133–147 Shapton D. A., Board R. G. Edited by London and New York:: Academic Press.;
    [Google Scholar]
  35. Mangan J. L. 1972; Quantitative studies on nitrogen metabolism in the bovine rumen, the rate of proteolysis of casein and ovalbumin and the release and metabolism of amino acids. British Journal of Nutrition 27:261–283
    [Google Scholar]
  36. Ono Y., Nojima S. 1969; Phospholipase A of Mycobacterium phlei: a regulatory membrane enzyme with ferric ion as effector. Journal of Biochemistry 65:979–981
    [Google Scholar]
  37. Proulx P. R., Van Deenen L. L. M. 1967; Phospholipase activities of Escherichia coli. Biochimica et biophysica acta 144:171–174
    [Google Scholar]
  38. Quarles R. H., Dawson R. M. C. 1969; A shift in the optimum pH of phospholipase D produced by activating long-chain anions. Biochemical Journal 112:795–799
    [Google Scholar]
  39. Raybin D. M., Bertsch L. L., Kornberg A. 1972; A phospholipase in Bacillus megaterium unique to spores and sporangia. Biochemistry 11:1754–1760
    [Google Scholar]
  40. Roughan P. G., Batt R. D. 1969; The glycerolipid composition of leaves. Phytochemistry 8:363–369
    [Google Scholar]
  41. Sheltawy A., Dawson R. M. C. 1969; Separation and estimation of phospholipids. In Chromato-graphic and Electrophoretic Techniques, 2nd edn.. 1 pp. 450–493 Smith I. Edited by London: William Heinemann, Pitman Medical.;
    [Google Scholar]
  42. Shibuya I., Maruo B. 1971; Phospholipases of Escherichia coli. I. Lipoprotein phospholipase A. Agricultural and Biological Chemistry 35:1180–1187
    [Google Scholar]
  43. Subbaiah P. V., Ganguly J. 1970; Studies on the phospholipases of rat intestinal mucosa. Biochemical Journal 118:233–239
    [Google Scholar]
  44. Vaskovsky V. E., Kostetsky E. Y. 1968; Modified spray for detection of phospholipids on thin-layer chromatograms. Journal of Lipid Research 9:396–397
    [Google Scholar]
  45. Waite M., Scherphof G. L., Boshouwers F. M. G., Van Deenen L. L. M. 1969; Differentiation of phospholipases A in mitochondria and lysosomes of rat liver. Journal of Lipid Research 10:411–420
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-89-1-163
Loading
/content/journal/micro/10.1099/00221287-89-1-163
Loading

Data & Media loading...

Most cited Most Cited RSS feed