1887

Abstract

SUMMARY: An obligate osmophilic mutant (strain B1/4) of has been isolated that fails to grow at osmotic pressures corresponding to 20% (w/v) sucrose or less. In 30% sucrose the yeast is filamentous and grows slowly. In 40% sucrose it is mainly filamentous and has over twice the normal diameter. In 60% sucrose it grows in the yeast form with a growth rate twice that of the culture in 40% sucrose. This mutant is lysed by a sudden drop in the osmotic pressure of the environment. Cell envelopes of the parent strain contained glucose and mannose in the ratio 1.2:1 and contained 3·8% (w/v) hexosamine, whereas the envelopes of the mutant contained 0·8% hexosamine. Cell envelopes of the mutant grown in 40% sucrose contained glucose and mannose in the ratio 1·9:1, whereas for envelopes of the yeast grown in 60% sucrose the ratio was 1·2:1. Neutral lipids from whole cells and those from the envelopes of the mutant strain generally contained more unsaturated fatty acids than the corresponding fractions from the parent strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-88-1-101
1975-05-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/88/1/mic-88-1-101.html?itemId=/content/journal/micro/10.1099/00221287-88-1-101&mimeType=html&fmt=ahah

References

  1. Bacon J. S., Davidson E. D., Jones D., Taylor I. F. 1966; The location of chitin in yeast cell wall. Biochemical Journal 1O1:36C–38C
    [Google Scholar]
  2. Bartnicki-Garcia S., Nickerson W. J. 1962; Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochimica et biophysica acta 58:102–119
    [Google Scholar]
  3. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  4. Cabib E., Bowers B. 1971; Chitin and yeast budding-localisation of chitin in yeast bud scars. Journal of Biological Chemistry 246:152–159
    [Google Scholar]
  5. Chattaway F. W., Holmes M. R., Barlow A. J. E. 1968; Cell wall composition of the mycelial and blastospore forms of Candida albicans. Journal of General Microbiology 51:367–376
    [Google Scholar]
  6. Davies R. 1964; Lactose utilization and hydrolysis in Saccharomyces fragilis. Journal of General Microbiology 37:81–98
    [Google Scholar]
  7. Demel R. A., Van Deenen L. L. M., Pethica B. A. 1967; Monolayer interactions of phospholipids and cholesterol. Biochimica et biophysica acta 135:11–19
    [Google Scholar]
  8. Devor A. W. 1950; Carbohydrate tests using sulphonated α-naphthol. Journal of the American Chemical Society 72:2008–2012
    [Google Scholar]
  9. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. Journal of Lipid Research 5:126–127
    [Google Scholar]
  10. Duncan H. M., Mackler B. 1966; Electron transport systems of yeast. III. Preparation and properties of cytochrome oxidase. Journal of Biological Chemistry 241:1694–1697
    [Google Scholar]
  11. Eddy A. A. 1958; The structure of the yeast cell wall. II. Degradative studies with enzymes. Proceedings of the Royal Society B149:425–440
    [Google Scholar]
  12. Falcone G., Nickerson W. J. 1956; Cell-wall mannan-protein of baker’s yeast. Science; New York: 124272–273
    [Google Scholar]
  13. Garland R. C., Cori C. F. 1972; Separation of phospholipids from glucose-6-phosphatase by gel-chromatography. Specificity of phospholipid reactivation. Biochemistry 11:4712–4718
    [Google Scholar]
  14. Ghuysen J. M., Tipper D. J., Strominger J. L. 1966; Enzymes that degrade bacterial cell walls. In Methods in Enzymology 8 pp. 685–699
    [Google Scholar]
  15. Giles K. W., Myer A. 1965; An improved diphenylamine method for the estimation of deoxyribo-nucleic acid. Nature; London: 20693
    [Google Scholar]
  16. Heinen W., De Vries H. 1966; A combined micro and semi-micro colorimetric determination of long-chain fatty acids from plant cutin. Archiv für Mikrobiologie 54:339–349
    [Google Scholar]
  17. Hunter K., Rose A. H. 1972; Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochimica et biophysica acta 260:639–653
    [Google Scholar]
  18. Kessler G., Nickerson W. J. 1959; Glucomannan-protein complexes from cell walls of yeasts. Journal of Biological Chemistry 234:2281–2285
    [Google Scholar]
  19. Koh T. Y. 1975; The isolation of obligate osmophilic mutants of the yeast Saccharomyces rouxii. Journal of General Microbiology 88:184–188
    [Google Scholar]
  20. Kobayashi G. S., Guiliacci P. L. 1967; Cell wall studies of Histoplasma capsulatum. Sabouraudia 5:180–188
    [Google Scholar]
  21. Korn E. D., Northcote D. H. 1960; Physical and chemical properties of polysaccharides and glycoproteins of the yeast-cell wall. Biochemical Journal 75:12–17
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with theFolin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Moore P. R., Baumann C. A. 1952; Skin sterols. I. Colorimetric determination of cholesterol and other sterols in skin. Journal of Biological Chemistry 195:615–621
    [Google Scholar]
  24. Nichols B. W., Moorhouse R. 1969; The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris. Lipids 4:311–316
    [Google Scholar]
  25. Northcote D. H. 1963; The nature of plant cell surfaces. Biochemical Society Symposia 22:105–125
    [Google Scholar]
  26. Northcote D. H., Horne R. W. 1952; The chemical composition and structure of the yeast cell wall. Biochemical Journal 51:232–236
    [Google Scholar]
  27. Nurminen T., Oura E., Suomalainen H. 1970; The enzymic composition of the isolated cell wall and plasma membrane of baker’s yeast. Biochemical Journal 116:61–69
    [Google Scholar]
  28. Proudlock J. W., Haslam J. M., Linnane A. W. 1969; Specific effect of unsaturated fatty acid depletion on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 37:847–852
    [Google Scholar]
  29. Rouser G., Kritchevsky G., Yamamoto A. 1967; Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. In Lipid Chromatographic Analysis 1 pp. 99–162 Marinetti G. V. Edited by London: Edward Arnold;
    [Google Scholar]
  30. Saeman J. F., Moore W. E., Mitchell R. L., Millett A. A. 1954; Techniques for the determination of pulp constituents by quantitative paper chromatography. Technical Association Papers. Technical Association of the Pulp and Paper Industry 37:336–343
    [Google Scholar]
  31. Scarr M. P. 1951; Osmophilic yeasts in raw beet and cane sugars and intermediate sugar-refining products. Journal of General Microbiology 5:704–713
    [Google Scholar]
  32. Scarr M. P., Rose D. 1966; Study of osmophilic yeasts producing invertase. Journal of General Microbiology 45:9–16
    [Google Scholar]
  33. Schairer H. V., Overath P. 1969; Lipids containing trans-unsaturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulation in Escherichia coli. Journal of Molecular Biology 44:209–214
    [Google Scholar]
  34. Sentandreau R., Northcote D. H. 1968; The structure of a glycopeptide isolated from the yeast cell wall. Biochemical Journal 109:419–432
    [Google Scholar]
  35. Suomalainen H., Nurminen T. 1970; The lipid composition of cell wall and plasma membrane of baker’s yeast. Chemistry and Physics of Lipids 4:247–256
    [Google Scholar]
  36. Sweeley C. C., Bentley R., Makita M., Wells W. W. 1963; Gas-liquid chromatography of tri-methylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society 85:2497–2507
    [Google Scholar]
  37. Van Handel E., Zilversmit D. B. 1957; Micromethod for the direct determination of serum triglycerides. Journal of Laboratory and Clinical Medicine 50:152–157
    [Google Scholar]
  38. Wells M. A., Dittmer J. C. 1963; The use of Sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry 2:1259–1263
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-88-1-101
Loading
/content/journal/micro/10.1099/00221287-88-1-101
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error