1887

Abstract

Mutants deficient in amino acid transport (), and unable to utilize -glutamate as a sole carbon and nitrogen source, have been isolated. There are four unlinked genes involved: and The transport levels of certain amino acids, and the growth characteristics on certain nitrogen and carbon sources and toxic amino acid analogues, indicate that: has defective transport of acidic amino acids; has defective transport of acidic and neutral amino acids; and have defective transport of acid, neutral and aromatic amino acids. and are recessive for all three characteristics in the heterozygous diploid; and are dominant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-86-1-174
1975-01-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/86/1/mic-86-1-174.html?itemId=/content/journal/micro/10.1099/00221287-86-1-174&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  2. Arst H. N., Cove D. J. 1969; Methylammonium resistance in Aspergillus nidulans. Journal of Bacteriology 98:1284–1293
    [Google Scholar]
  3. Benko P. V., Wood T. C., Segel I. H. 1967; Specificity and regulation of methionine transport in filamentous fungi. Archives of Biochemistry and Biophysics 122:783–804
    [Google Scholar]
  4. Benko P. V., Wood T. C., Segel I. H. 1969; Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Archives of Biochemistry and Biophysics 129:498–508
    [Google Scholar]
  5. Clutterbuck A. J. 1974; Aspergillus nidulans genetics. In Handbook of Genetics 1 King R. C. Edited by New York: Plenum Press;
    [Google Scholar]
  6. Cove D. J. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et biophysica acta 113:51–56
    [Google Scholar]
  7. Crabeel M., Grenson M. 1970; Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. European Journal of Biochemistry 14:197–204
    [Google Scholar]
  8. Dunn E., Pateman J. A. 1972; Urea and thiourea uptake in Aspergillus nidulans. Heredity 29:129
    [Google Scholar]
  9. Gits J. J., Grenson M. 1967; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. III. Evidence for a specific methionine-transporting system. Biochimica et biophysica acta 135:507–516
    [Google Scholar]
  10. Grenson M. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochimica et biophysica acta 127:339–346
    [Google Scholar]
  11. Grenson M., Hennaut C. 1971; Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. Journal of Bacteriology 105:477–482
    [Google Scholar]
  12. Grenson M., Hou C. 1972; Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenase mutants of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 48:749–756
    [Google Scholar]
  13. Grenson M., Hou C., Crabeel M. 1970; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. Journal of Bacteriology 103:770–777
    [Google Scholar]
  14. Grenson M., Mousset M., Wiame J. M., Béchet J. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine transporting system. Biochimica et biophysica acta 127:325–338
    [Google Scholar]
  15. Gupta R. K., Pramer D. 1970; Amino acid transport by the filamentous fungi Arthrobotrys conoides. Journal of Bacteriology 103:120–130
    [Google Scholar]
  16. Hackette S. L., Skye G. E., Burton C., Segel I. H. 1970; Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. Journal of Biological Chemistry 245:4241–4250
    [Google Scholar]
  17. Herman C., Clutterbuck A. J. 1966; A method for selection of auxotrophs by means of ‘spidery’ growth. Aspergillus Newsletter 7:13–14
    [Google Scholar]
  18. Hunter D. R., Segel I. H. 1971; Acidic and basic amino acid transport systems of Penicillium chrysogenum. Archives of Biochemistry and Biophysics 144:168–183
    [Google Scholar]
  19. Jacobson E. S., Metzenberg R. L. 1968; A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochimica et biophysica acta 156:140–147
    [Google Scholar]
  20. Jones O. T. G. 1963; The accumulation of amino-acids by fungi, with particular reference to the plant parasitic fungus Botrytis fabae. Journal of Experimental Botany 14:399–411
    [Google Scholar]
  21. Kappy M. S., Metzenberg R. L. 1965; Studies on the basis of ethionine-resistance in Neurospora. Biochimica et biophysica acta 107:425–433
    [Google Scholar]
  22. Kinghorn J. R., Pateman J. A. 1972; Regulation of glutamate transport in Aspergillus nidulans. Heredity 29:128
    [Google Scholar]
  23. Kinghorn J. R., Pateman J. A. 1973; NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. Journal of General Microbiology 78:39–46
    [Google Scholar]
  24. Kinghorn J. R., Pateman J. A. 1974a; The effect of the carbon source on ammonium regulation in Aspergillus nidulans. Molecular and General Genetics 128:95–98
    [Google Scholar]
  25. Kinghorn J. R., Pateman J. A. 1974b; The regulation of NAD l-glutamate dehydrogenase in Aspergillus nidulans. Genetical Research 23:119–124
    [Google Scholar]
  26. Lester G. 1966; Genetic control of amino acid permeability in Neurospora crassa. Journal of Bacteriology 91:677–684
    [Google Scholar]
  27. Mccully K. S., Forbes E. 1965; The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6:352–359
    [Google Scholar]
  28. Pall M. L. 1969; Amino acid transport in Neurospora crassa. I. Properties of two amino acid transport systems. Biochimica et biophysica acta 173:113–127
    [Google Scholar]
  29. Pateman J. A., Dunn E., Kinghorn J. R., Forbes E. 1974; Ammonium and methylammonium transport in wild type and mutant cells of Aspergillus nidulans. Molecular and General Genetics 133:225–236
    [Google Scholar]
  30. Pateman J. A., Kinghorn J. R., Dunn E., Forbes E. 1973; Ammonium regulation in Aspergillus nidulans. Journal of Bacteriology 114:943–950
    [Google Scholar]
  31. Pontecorvo G., Roper J. A., Hemmons L. M., Macdonald K. D., Bufton A. W. J. 1953; The genetics of Aspergillus nidulans. Advances in Genetics 5:141–238
    [Google Scholar]
  32. Sinha U. 1969; Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62:495–505
    [Google Scholar]
  33. Skye G. E., Segel I. H. 1970; Independent regulation of cysteine and cystine transport in Penicillium chrysogenum. Archives of Biochemistry and Biophysics 138:306–318
    [Google Scholar]
  34. Stadler D. 1966; Genetic control of the uptake of amino acids in Neurospora. Genetics 54:677–685
    [Google Scholar]
  35. Surdin Y., Sly W., Sire J., Bordes A. M., De Robichon-Szulmajster H. 1965; Propriétés et contrôle génétique du système d’accumulation des acides aminés chez Saccharomyces cerevisiae. Biochimica et biophysica acta 107:546–566
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-86-1-174
Loading
/content/journal/micro/10.1099/00221287-86-1-174
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error