1887

Abstract

SUMMARY: When grown in batch culture in various media sp. 4716 displayed a distinct sequence of morphological forms. Organisms occurred as stout, almost straight rods in exponential phase, curved rods (characteristic of spp.) in stationary phase, and predominantly as spheres in decline phase. The spheres were formed after growth had ceased due to the depletion of the carbon/energy source. They were not viable, survival of the culture depending on the few rod forms that remained during the decline phase. The spheres seemingly arose from degradation, but not complete removal, of the peptidoglycan present in the walls. Though spheres contained less nucleic acid and low molecular weight cytoplasmic constituents than did rods, many still possessed an intact cytoplasmic membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-86-1-12
1975-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/86/1/mic-86-1-12.html?itemId=/content/journal/micro/10.1099/00221287-86-1-12&mimeType=html&fmt=ahah

References

  1. Baker D. A. 1971 The morphology of vibrios Ph.D. thesis University of Reading;
    [Google Scholar]
  2. Blackburn S., Lowther A. G. 1951; Separation of N-2,4-dinitrophenylamino acids on paper chromatograms. Biochemical Journal 48:126–128
    [Google Scholar]
  3. Braulke H. 1933; Form und Wachstumsveränderungen bei Vibrionen. Zeitschrift für Hygiene und Infektionskrankheiten 115:25–46
    [Google Scholar]
  4. Braun V., Rehn K. 1969; Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the Escherichia coli cell wall. The specific effect of trypsin on the membrane structure. European Journal of Biochemistry 10:426–438
    [Google Scholar]
  5. Braun V., Schwartz U. 1969; Structure, function and biosynthesis of the rigid layer of the Escherichia coli cell wall. Journal of General Microbiology 57:iii
    [Google Scholar]
  6. Braun V., Wolff H. 1970; The murein-lipoprotein linkage in the cell wall of Escherichia coli. European Journal of Biochemistry 14:387–391
    [Google Scholar]
  7. Burton K. 1956; A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  8. Clark-Walker G. D. 1969; Association of microcyst formation in Spirillum itersonii with the spon-taneous induction of a defective bacteriophage. Journal of Bacteriology 97:885–892
    [Google Scholar]
  9. Das J., Chatterjee S. N. 1969; Morphological changes in Vibrio cholerae organisms in glucose saline. Journal of General Microbiology 54:445–450
    [Google Scholar]
  10. Davis G. H. G., Park R. W. A. 1962; A taxonomic study of certain bacteria currently classified as Vibrio species. Journal of General Microbiology 27:101–119
    [Google Scholar]
  11. Elson L. A., Morgan W. T. J. 1933; A colorimetric method for the determination of glucosamine and chondrosamine. Biochemical Journal 27:1824–1828
    [Google Scholar]
  12. Felter R. A., Colwell R. R., Chapman G. B. 1969; Morphology and round body formation in Vibrio marinus. Journal of Bacteriology 99:326–335
    [Google Scholar]
  13. Finkelstein R. A., Atthasampunna P., Chulasamayer M., Charunmethee P. 1966; Pathogenesis of experimental cholera: biological activities of purified procholeragen A. Journal of Immunology 96:440–449
    [Google Scholar]
  14. Gardner A. D., Venkatraman K. V. 1935; The antigens of the cholera group of vibrios. Journal of Hygiene 35:262–282
    [Google Scholar]
  15. Ghuysen J. M. 1968; Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriological Reviews 32:425–464
    [Google Scholar]
  16. Glauert A. M., Thornley M. J. 1969; The topography of the bacterial cell wall. Annual Reviews of Microbiology 23:159–198
    [Google Scholar]
  17. Harrigan W. F., Mccance E. 1966 Laboratory Methods in Microbiology London: Academic Press;
    [Google Scholar]
  18. Henrici A. T. 1925; A statistical study of the form and growth of the cholera vibrio. Journal of Infectious Diseases 37:75–81
    [Google Scholar]
  19. Iannetta A., Wedgwood R. J. 1967; Culture of serum-induced spheroplasts from Vibrio cholerae. Journal of Bacteriology 93:1688–1692
    [Google Scholar]
  20. Ingram V. M., Salton M. R. J. 1957; The action of fluorodinitrobenzene on bacterial cell walls. Biochimica et biophysica acta 24:9–14
    [Google Scholar]
  21. Krulwich T. A., Ensign J. C., Tipper D. J., Strominger J. L. 1967a; Sphere-rod morphogenesis in Arthrobacter crystallopoietes. I. Cell wall composition and polysaccharides of the peptidoglycan. Journal of Bacteriology 94:734–740
    [Google Scholar]
  22. Krulwich T. A., Ensign J. C., Tipper D. J., Strominger J. L. 1967b; Sphere-rod morphogenesis in Arthrobacter crystallopoietes. II. Peptides of the cell wall peptidoglycan. Journal of Bacteriology 94:741–750
    [Google Scholar]
  23. Levin R. E., Vaughn R. H. 1968; Spontaneous spheroplast formation in Desulfovibrio aestuarii. Canadian Journal of Microbiology 14:1271–1276
    [Google Scholar]
  24. Lowther A. G. 1951; Identification of N-2,4-dinitrophenylamino acids. Nature; London: 167767–768
    [Google Scholar]
  25. Mackie T. J. 1929; The group of vibrios and spirilla - classification and nomenclature - general biological characters of the cholera vibrio - relationship to allied organisms. In A System of Bacteriology in Relation to Medicine 4 pp. 340–367 Great Britain: Medical Research Council;
    [Google Scholar]
  26. Mandelstam J., Rogers H. J. 1959; The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochemical Journal 72:654–662
    [Google Scholar]
  27. Mandelstam J., Mcquillen K. 1968 Biochemistry of Bacterial Growth Oxford: Blackwell;
    [Google Scholar]
  28. Morris J. A., Park R. W. A. 1971; The isolation of micro-aerophilic vibrios. Society for Applied Bacteriology Technical Series 5:207–217
    [Google Scholar]
  29. Morse M. L., Carter C. E. 1949; The synthesis of nucleic acids in cultures of Escherichia coli, strains b and b/r. Journal of Bacteriology 58:317–326
    [Google Scholar]
  30. Nelson N. 1944; A photometric adaption of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  31. Park R. W. A. 1961; A note on the systematic position of Vibrio fetus. Journal of Applied Bacteriology 24:23–26
    [Google Scholar]
  32. Park R. W. A., Jeynes M. H. 1959; Identity of the so-called vibrios of the oral flora. Journal of Bacteriology 77:667
    [Google Scholar]
  33. Pooley H. M., Shockman G. D. 1970; Relationship between the location of the autolysin, cell wall synthesis, and the development of resistance to cellular autolysis in Streptococcus faecalis after inhibition of protein synthesis. Journal of Bacteriology 103:457–466
    [Google Scholar]
  34. Repaske R. 1958; Lysis of Gram-negative organisms and the role of versene. Biochimica et biophysica acta 30:225–232
    [Google Scholar]
  35. Rondle C. J. M., Morgan W. T. J. 1955; The determination of glucosamine and galactosamine. Bio-chemical Journal 61:586–589
    [Google Scholar]
  36. Salton M. R. J. 1961; Studies on the bacterial cell wall. VIII. Reaction of walls with hydrazine and with fluorodinitrobenzene. Biochimica et biophysica acta 52:329–342
    [Google Scholar]
  37. Schocher A. J., Bayley S. T., Watson R. W. 1962; Composition of purified mucopeptide from the wall of Aerobacter cloacae. Canadian Journal of Microbiology 8:89–98
    [Google Scholar]
  38. Shockman G. D., Pooley H. M., Thompson J. S. 1967; Autolytic enzyme system of Streptococcus faecalis. III. Localization of the autolysin at the sites of cell wall synthesis. Journal of Bacteriology 94:1525–1530
    [Google Scholar]
  39. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  40. Strange R. E., Dark F. A., Ness A. G. 1961; The survival of stationary phase cells of Aerobacter aerogenes stored in aqueous suspension. Journal of General Microbiology 25:61–76
    [Google Scholar]
  41. Strominger T. L., Ghuysen J. M. 1967; Mechanisms of enzymatic bacteriolysis. Science; New York: 156213–221
    [Google Scholar]
  42. Tipper D. J., Strominger J. L., Ensign J. L. 1967; Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry 6:906–920
    [Google Scholar]
  43. White D., Dworkin M., Tipper D. J. 1968; Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. Journal of Bacteriology 95:2186–2197
    [Google Scholar]
  44. Work E. 1957; Reaction of ninhydrin in acid solution with straight chain amino acids containing two amino groups and its application to the estimation α-ε-diaminopimelic acid. Biochemical Journal 67:416–423
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-86-1-12
Loading
/content/journal/micro/10.1099/00221287-86-1-12
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error