1887

Abstract

SUMMARY

Three classes of cytochrome deficient mutants of have been isolated. These classes were defined by concentration ratios of cytochromes and relative to the parent strain, and by responses to non-fermentable substrates.

The cytochrome deficiencies were not due to blocks in haem biosynthesis or to failure of the control mechanisms which alter the respiratory chain during growth of Mutational loss of cytochrome did not reduce proportionately the rate of oxygen consumption by late exponential phase cells, although exponential growth rates were generally lower than the parent strain. The cytochrome system of wild-type appears to contain cytochromes (or + ), c and

A previously unreported absorption maximum at 617 nm was discovered, which was elevated in some of the cytochrome deficient mutants. In these mutants, a new maximum also appeared at 627 nm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-81-2-435
1974-04-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/81/2/mic-81-2-435.html?itemId=/content/journal/micro/10.1099/00221287-81-2-435&mimeType=html&fmt=ahah

References

  1. Anderson T. J., Ivánovics G. 1967; Isolation and some characteristics of haemin dependent mutants of Bacillus subtilis. Journal of General Microbiology 49:31–40
    [Google Scholar]
  2. Beljanski M., Beljanski M. 1957; Sur la formation d’enzymesrespiratoires chez un mutant d’Escherichia coli streptomycin-résistant et auxotrophe pour l’hémine. Annales de l’lnstitut Pasteur 92:396–412
    [Google Scholar]
  3. Chaix P., Petit J. F. 1956; Étude des différents spectres cytochromique de Bacillus subtilis. Biochimica et biophysica acta 22:66–71
    [Google Scholar]
  4. Deibel R. H., Evans J. B. 1960; Modified benzidine test for the detection of cytochrome containing respiratory systems in microorganisms. Journal of Bacteriology 79:356–360
    [Google Scholar]
  5. Downey R. J. 1964; Vitamin K-mediated electron transfer in Bacillus subtilis. Journal of Bacteriology 88:904–911
    [Google Scholar]
  6. Farrand S. K., Taber H. 1971; An aromatic amino acid auxotroph of B. subtilis deficient in cytochromes and in menaquinone. Bacteriological Proceedings 161:
    [Google Scholar]
  7. Farrand S. K., Taber H. 1973a; A pleiotropic menaquinone-deficient mutant of B. subtilis. Journal of Bacteriology 115:1021–1034
    [Google Scholar]
  8. Farrand S. K., Taber H. 1973b; Physiological effects of menaquinone deficiency in B. subtilis. Journal of Bacteriology 115:1035–1044
    [Google Scholar]
  9. Fortnagel P., Freese E. 1968; Analysis of sporulation mutants. II. Mutants blocked in the tricarboxylic acid cycle. Journal of Bacteriology 95:1431–1438
    [Google Scholar]
  10. Freese E. B. 1973; Unusual membranous structures in cytochrome α-deficient mutants of B. subtilis. Journal of General Microbiology 75:187–190
    [Google Scholar]
  11. Gause G. F. 1966 In Microbial Models of Cancer Cells Amsterdam: North-Holland;
    [Google Scholar]
  12. Gause G. F., Kochetkova G. V., Bibikova M. V. 1964; Investigation of mutants with oxidation deficiency in B. subtilis. Doklady akademiinauk SSSR 155:1184–1187
    [Google Scholar]
  13. Hoch J. A. 1971; Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. Journal of Bacteriology 105:896–901
    [Google Scholar]
  14. Jensen J., Thofern E. 1953; Chlorhämin (Ferriporphyrinchlorid) alsBakterienwuchstoff. Zeitschrift für Naturforschung 8b:599–607
    [Google Scholar]
  15. Kielley W. W. 1963; Preparation and assay of phosphorylating submitochondrial particles: sonicated mitochondria. In Methods in Enzymology 6 pp. 272–277 New York: Academic Press;
    [Google Scholar]
  16. King M. E. 1971; Regulation of cytochrome biosynthesis in some eukaryotes. In Metabolic Regulation 5 of Metabolic Pathways pp. 55–58 Vogel H. J. Edited by New York: Academic Press;
    [Google Scholar]
  17. Kiss I., Berek I., Ivánovics G. 1971; Mapping the ε-aminolaevulinic acid synthetase locus in Bacillus subtilis. Journal of General Microbiology 66:153–159
    [Google Scholar]
  18. Miki K., Okunuki K. 1969; Cytochromes of Bacillus subtilis. II; III. Purification and spectral properties of cytochromes c-550 and c-554. Journal of Biochemistry 66:831–844
    [Google Scholar]
  19. Mitchell M. B., Mitchell H. K., Tissières A. 1953; Mendelian and non-Mendelian factors affecting the cytochrome system of Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America 39:606–613
    [Google Scholar]
  20. Ogur M., Roshanmanesh A., Ogur S. 1965; Tricarboxylic acid mutants in Saccharomyces: comparison of independently derived mutants. Science; New York: 1471590
    [Google Scholar]
  21. Reilly C., Sherman F. 1965; Glucose repression of cytochrome a synthesis in cytochrome-deficient mutants of yeast. Biochimica et biophysica acta 95:640–651
    [Google Scholar]
  22. Sဓsဓrman A., Surdeanu M., Szégli G., Horodniceanu T., Greceanu V., Demitrescu A. 1968; Hemin-deficient mutants of E. coli k-12. Journal of Bacteriology 96:570–572
    [Google Scholar]
  23. Sherman F. 1965; The genetic control of the cytochrome system in yeast. In Mechanisms de Regulation des Activities Cellulaires chez les Microorganismes pp. 465–479 Paris: C.N.R.S;
    [Google Scholar]
  24. Sherman F. 1967; The preparation of cytochrome-deficient mutants of yeast. In Methods in Enzymology 10 pp. 610–616 Estabrook R. W., Pullman M. E. Edited by New York: Academic Press;
    [Google Scholar]
  25. Sherman F., Stewart J. W. 1971; Genetics and biosynthesis of cytochrome c. Annual Review of Genetics 5:257–296
    [Google Scholar]
  26. Sherman F., Taber H., Campbell W. 1965; Genetic determination of isocytochromes c in yeast. Journal of Molecular Biology 13:21–39
    [Google Scholar]
  27. Slonimski P. 1953 Formations des Enzymes Respirations chez la Levure Paris: Masson et Cie;
    [Google Scholar]
  28. Smith L. 1954; Bacterial cytochromes. Difference spectra. Archives of Biochemistry and Biophysics 50:299–314
    [Google Scholar]
  29. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  30. Taber H. W., Farrand S. K., Halfenger G. 1972; Genetic regulation of membrane components in B. subtilis. In Spores 5 pp. 140–147 Halvorson H. O., Hanson R. S., Campbell L. L. Edited by Ann Arbor: American Society for Microbiology;31
    [Google Scholar]
  31. Taber H., Sherman F. 1966; Lack of sporulation in cytochrome a deficient mutants of Bacillus subtilis. Bacteriological Proceedings 31:
    [Google Scholar]
  32. Takahashi I. 1963; Transducing phages for Bacillus subtilis. Journal of General Microbiology 31:211–217
    [Google Scholar]
  33. Tien W., White D. C. 1968; Linear sequential arrangement of genes for the biosynthetic pathway of protoheme in Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America 61:1392–1398
    [Google Scholar]
  34. Tochikubo K. 1971; Changes in terminal respiratory pathways of Bacillus subtilis during germination, outgrowth, and vegetative growth. Journal of Bacteriology 108:652–661
    [Google Scholar]
  35. Vernon L. P., Magnum J. H. 1960; Cytochromes of Bacillus megaterium and Bacillus subtilis. Archives of Biochemistry and Biophysics 90:103–104
    [Google Scholar]
  36. Wu H. 1923; Studies on hemoglobin. III. Ultramicro method for the determination of hemoglobin or peroxidase. Journal of Biochemistry 2:189–194
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-81-2-435
Loading
/content/journal/micro/10.1099/00221287-81-2-435
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error