The Inducible Quinate-Shikimate Catabolic Pathway in : Genetic Organization Free

Abstract

SUMMARY: In the conversion of quinate and shikimate to protocatechuate is catalysed by three inducible enzymes. Previous studies have demonstrated that the locus encodes a multimeric regulatory protein which is required for the synthesis of the three catabolic enzymes. The locus has been shown to encode catabolic dehydroquinase. This work defines two new classes of mutants. The locus is the structural gene for a bifunctional enzyme which catalyses the dehydrogenation of quinate and shikimate. Mutants of the class specifically lack 5-dehydroshikimate dehydrase. Alleles of the four different mutant classes are tightly clustered and are located to the left of in L.G. VII.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-81-2-337
1974-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/81/2/mic-81-2-337.html?itemId=/content/journal/micro/10.1099/00221287-81-2-337&mimeType=html&fmt=ahah

References

  1. Ahmed A. 1968; Organization of the histidine-3 region of Neurospora . Molecular and General Genetics 103:185–193
    [Google Scholar]
  2. Ahmed A., Case M. E., Giles N. H. 1964; The nature of complementation among mutants in the histidine-3 region of Neurospora crassa . Brookhaven Symposia in Biology 17:53–65
    [Google Scholar]
  3. Ames B. N., Hartman P. E. 1963; The histidine operon. Cold Spring Harbor Symposia on Quantitative Biology 28:349–356
    [Google Scholar]
  4. Ames B. N., Martin R. 1964; Biochemical aspects of genetics: the operon. Annual Review of Biochemistry 33:235–258
    [Google Scholar]
  5. Bassel J., Mortimer R. 1971; Genetic order of the galactose structural genes in Saccharomyces cerevisiae . Journal of Bacteriology 108:179–183
    [Google Scholar]
  6. Berlyn M. B. 1967; Gene-enzyme relationships in histidine biosynthesis in Aspergillus nidulans . Genetics 57:561–570
    [Google Scholar]
  7. Brenner S., Stretton A. O. W. 1965; Phase shifting of amber and ochre mutants. Journal of Molecular Biology 13:944–946
    [Google Scholar]
  8. Cain R. B. 1972; The identity of shikimate dehydrogenase and quinate dehydrogenase in Aspergillus niger . Biochemical Journal 127:15 P
    [Google Scholar]
  9. Case M. E. 1963; Procedure for filtration-concentration experiments. Neurospora Newsletter 3:7
    [Google Scholar]
  10. Case M. E. 1972; Genetical and biochemical characteristics of qa-I mutants in Neurospora crassa . Genetics 71: s 10
    [Google Scholar]
  11. Case M. E., Giles N. H. 1968; Evidence for nonsense mutations in the arom gene cluster of Neurospora crassa . Genetics 60:49–58
    [Google Scholar]
  12. Case M. E., Giles N. H., Doy C. H. 1972; Genetical and biochemical evidence for further interrelationships between the polyaromatic synthetic and the quinate-shikimate catabolic pathways in Neurospora crassa . Genetics 71:337–348
    [Google Scholar]
  13. Chaleff R. S. 1972 Studies on the genetic control of the inducible quinate-shikimate catabolic pathway in Neurospora crassa Ph.D. Dissertation Yale University, U.S.A:
    [Google Scholar]
  14. Chaleff R. S. 1974; The inducible quinate-shikimate catabolic pathway in Neurospora crassa: induction and regulation of enzyme synthesis. Journal of General Microbiology 81:357–372
    [Google Scholar]
  15. Cove D. J. 1969; Evidence for a near limiting intracellular concentration of a regulator substance. Nature; London: 224272–273
    [Google Scholar]
  16. de Leeuw A. 1967 Gene-enzyme relationships in aromatic biosynthesis in yeast Ph.D. Dissertation Yale University, U.S.A:
    [Google Scholar]
  17. Demerec M. 1964; Clustering of functionally related genes in Salmonella typhimurium . Proceedings of the National Academy of Sciences of the United States of America 51:1057–1060
    [Google Scholar]
  18. Douglas H. C., Hawthorne D. C. 1964; Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces . Genetics 49:837–844
    [Google Scholar]
  19. Douglas H. C., Hawthorne D. C. 1966; Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics 54:911–916
    [Google Scholar]
  20. Doy C. H. 1968; Control of aromatic biosynthesis particularly with regard to the common pathway and the allosteric enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthetase. Reviews of Pure and Applied Chemistry 18:41–78
    [Google Scholar]
  21. Dunn J. J., Studier F. W. 1973; T7 early RNAs are generated by site-specific cleavages. Proceedings of the National Academy of Sciences of the United States of America 70:1559–1563
    [Google Scholar]
  22. Fink G. R. 1966; A cluster of genes controlling three enzymes in histidine biosynthesis in Saccharomyces cerevisiae . Genetics 53:445–459
    [Google Scholar]
  23. Fink G. R., Martin R. G. 1967; Translation and polarity in the histidine operon. II. Polarity in the histidine operon. Journal of Molecular Biology 30:97–107
    [Google Scholar]
  24. Fogel S., Hurst D. D., Mortimer R. K. 1971; Gene conversion in unselected tetrads from multipoint crosses. Stadler Symposium 1:89–110
    [Google Scholar]
  25. Garen A. 1968; Sense and nonsense in the genetic code. Science; New York: 160149–159
    [Google Scholar]
  26. Giles N. H. 1951; Studies on the mechanism of reversion in biochemical mutants of Neurospora crassa . Cold Spring Harbor Symposia on Quantitative Biology 16:283–313
    [Google Scholar]
  27. Giles N. H., Case M. E., Partridge C. W., Ahmed S. I. 1967a; A gene cluster in Neurospora crassacoding for an aggregate of five aromatic synthetic enzymes. Proceedings of the National Academy of Sciences of the United States of America 58:1453–1460
    [Google Scholar]
  28. Giles N. H., Partridge C. W. H., Ahmed S. I., Case M. E. 1967b; The occurrence of two dehydro- quinases in Neurospora crassa, one constitutive and one inducible. Proceedings of the National Academy of Sciences of the United States of America 58:1930–1937
    [Google Scholar]
  29. Gross S. R. 1958; The enzymatic conversion of 5-dehydro-shikimate to protocatechuate. Journal of Biological Chemistry 233:1146–1151
    [Google Scholar]
  30. Gross S. R. 1969; Genetic regulatory mechanisms in the fungi. Annual Review of Genetics 3:395–424
    [Google Scholar]
  31. Gross S. R., Gafford R. D., Tatum E. L. 1956; The metabolism of protocatechuate by Neurospora . Journal of Biological Chemistry 219:781–796
    [Google Scholar]
  32. Gross S. R., Tatum E. L. 1955; Structural specificity of inducers of protocatechuic acid oxidase synthesis in Neurospora . Science; New York: 1221141
    [Google Scholar]
  33. Herzenberg L. A. 1959; Studies on the induction of β-galactosidase in a cryptic strain of E. coli . Biochimica et biophysica acta 31:525–538
    [Google Scholar]
  34. Horowitz N. H., Metzenberg R. L. 1965; Biochemical aspects of genetics. Annual Review of Biochemistry 34:527–564
    [Google Scholar]
  35. Imamoto F., Ito J., Yanofsky C. 1966; Polarity in the tryptophan operon of E. coli . Cold Spring Harbor Symposia on Quantitative Biology 31:235–249
    [Google Scholar]
  36. Jacobson J. W., Hart B. A., Doy C. H., Giles N. H. 1972; Purification and stability of the multienzyme complex encoded in the arom gene cluster of Neurospora crassa . Biochimica et biophysica acta 289:1–12
    [Google Scholar]
  37. Martin R. G., Whitfield H. J., Berkowitz D., Voll M. 1966; A molecular model of the phenomenon of polarity. Cold Spring Harbor Symposia on Quantitative Biology 31:215–220
    [Google Scholar]
  38. Mokrasch L. C., Mcgilvery R. W. 1956; Purification and properties of fructose-1,6-diphosphatase. Journal of Biological Chemistry 221:909–917
    [Google Scholar]
  39. Murray N. E. 1970; Recombination events that span sites within neighboring gene loci of Neurospora . Genetical Research 15:109–121
    [Google Scholar]
  40. Newton W. A. 1966; Effect of nonsense mutations on translation of the lactose operon of E. coli . Cold Spring Harbor Symposia on Quantitative Biology 31:181–187
    [Google Scholar]
  41. Newton W. A., Beckwith J. R., Zipser D., Brenner S. 1965; Nonsense mutants and polarity in the lac operon of E. coli . Journal of Molecular Biology 14:290–296
    [Google Scholar]
  42. Partridge C.W.H., Case M. E., Giles N. H. 1972; Direct induction in wild-type Neurospora crassa of mutants (qa-1°) constitutive for the catabolism of quinate and shikimate. Genetics 72:411–417
    [Google Scholar]
  43. Rines H. 1969 Genetical and biochemical studies on the inducible quinic acid catabolic pathway in Neurospora crassa Ph.D. Dissertation Yale University, U.S.A:
    [Google Scholar]
  44. Rines H., Case M. E., Giles N. H. 1969; Mutants in the arom gene cluster of Neurospora crassa specific for biosynthetic dehydroquinase. Genetics 61:789–800
    [Google Scholar]
  45. Shaffer B., Edelstein S., Fink G. R. 1972; His4: a gene complaromyces of Saccharomyces cerevisiae . Brookhaven Symposia in Biology 23:250–270
    [Google Scholar]
  46. Tatum E. L., Gross S. R. 1956; Incorporation of carbon atoms 1 and 6 of glucose into protocatechuic acid by Neurospora . Journal of Biological Chemistry 219:797–807
    [Google Scholar]
  47. Tresguerres M., De Torrontegui G., Canovas J. L. 1970; The metabolism of quinate by Acinetobacter calco-aceticus . Archiv für Mikrobiologie 70:110–118
    [Google Scholar]
  48. Tresguerres M., De Torrontegui G., Ingledew W. M., Canovas J. L. 1970; Regulation of the enzymes of the β-ketoadipate pathway in Moraxella: control of quinate oxidation by protocatechuic acid. European Journal of Biochemistry 14:445–450
    [Google Scholar]
  49. Valone J. A., Case M. E., Giles N. H. 1971; Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa . Proceedings of the National Academy of Sciences of the United States of America 68:1555–1559
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-81-2-337
Loading
/content/journal/micro/10.1099/00221287-81-2-337
Loading

Data & Media loading...

Most cited Most Cited RSS feed