1887

Abstract

SUMMARY: Yeast glutamine synthetase was purified and shown to be an octameric globular protein ( = 15·4, = 1·29, mol. wt = 390000). It consists of two weakly-bound half molecules ( 8·7, , = 1·35, mol. wt = 180500) and relatively harsh treatment is required to dissociate these octamers into component monomers ( = 3·8). Deactivation of the enzyme may include changes in the conformation of the native enzyme with its separation into two ‘ tight ’ tetramers, followed by their dissociation into component monomers and dimers. In the presence of Mg and glutamate, monomers re-aggregate to oligomers which, although having transferase activity, are devoid of synthetase activity. The relevance of these observations in relation to control of glutamine synthetase activity in yeast is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-80-2-485
1974-02-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/80/2/mic-80-2-485.html?itemId=/content/journal/micro/10.1099/00221287-80-2-485&mimeType=html&fmt=ahah

References

  1. Ackers G. K. 1964; Molecular exclusion and restricted diffusion processes in molecular-sieve chromatography. Biochemistry 3:723–730
    [Google Scholar]
  2. Ferguson A. R., Sims A. P. 1971; Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts. Journal of General Microbiology 69:423–427
    [Google Scholar]
  3. Ferguson A. R., Sims A. P. 1974a; The regulation of glutamine metabolism in Candida utilis: the role of glutamine in the control of glutamine synthetase. Journal of General Microbiology 80:159–171
    [Google Scholar]
  4. Ferguson A. R., Sims A. P. 1974b; The regulation of glutamine metabolism in Candida utilis: the inactivation of glutamine synthetase. Journal of General Microbiology 80:173–185
    [Google Scholar]
  5. Glass D. S. 1970; Automatic quench correction by channels ratio for both carbon-14 and tritium using a three channel liquid scintillation counter. International Journal of Applied Radiation and Isotopes 21:531–544
    [Google Scholar]
  6. Kapoor M., Bray D. F., Ward G. W. 1969; Glutamine synthetase of Neurospora crassa. Inactivation by urea and protection by some substrates and allosteric effectors. Archives of Biochemistry and Biophysics 134:423–433
    [Google Scholar]
  7. Klotz I. M., Darnall D. W. 1969; Protein sub-units: A table (second edition). Science; New York: 166126–128
    [Google Scholar]
  8. Laurent T. C., Killander J. 1964; A theory of gel filtration and its experimental verification. Journal of Chromatography 14:317–330
    [Google Scholar]
  9. Martin R. G., Ames B. N. 1961; A method for determining the sedimentation behaviour of enzymes: application to protein mixtures. Journal of Biological Chemistry 236:1372–1379
    [Google Scholar]
  10. Sarker P. K., Fischman D. A., Goldwasser E., Moscona A. A. 1972; Isolation and characterisation of glutamine synthetase from chicken neural retina. Journal of Biological Chemistry 247:7743–7749
    [Google Scholar]
  11. Schachman H. K. 1959 Ultracentrifugation in Biochemistry New York and London: Academic Press;
    [Google Scholar]
  12. Shapiro B. M., Ginsburg A. 1968; Effects of specific divalent cations on some physical and chemical properties of glutamine synthetase for Escherichia coli. Taut and relaxed forms. Biochemistry 7:2153–2167
    [Google Scholar]
  13. Siegel L. M., Monty K. J. 1966; Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochimica et biophysica acta 112:346–362
    [Google Scholar]
  14. Sims A. P., Ferguson A. R. 1972; The role of enzyme inactivation in the regulation of glutamine synthesis in yeast: in vivo studies using 15N. 6. Wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärzte, Rottach-Egern. In Second International Symposium on Metabolic Interconversion of Enzymes pp. 261–276 Wieland O., Helmreich E., Holzer H. Edited by Berlin, Heidelberg and New York: Springer-Verlag;
    [Google Scholar]
  15. Sims A. P., Ferguson A. R. 1974; The regulation of glutamine metabolism in Candida utilis: studies with 15NH3 to measure in vivo rates of glutamine synthesis. Journal of General Microbiology 80:143–158
    [Google Scholar]
  16. Stahl J., Jaenicke L. 1972; Investigations of the structure of glutamine synthetase from pig brain. European Journal of Biochemistry 29:401–407
    [Google Scholar]
  17. Tate S. S., Leu F., Meister A. 1972; Rat liver glutamine synthetase: preparation, properties and mechanism of inhibition by carbamyl phosphate. Journal of Biological Chemistry 247:5312–5321
    [Google Scholar]
  18. Tiemeier D. C., Milman G. 1972; Regulation of glutamine synthetase in cultured Chinese hamster cells. Journal of Biological Chemistry 247:5722–5727
    [Google Scholar]
  19. Valentine R. C., Shapiro B. M., Stadtman E. R. 1970; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli . Biochemistry 7:2143–2152
    [Google Scholar]
  20. Wilk S., Meister A., Haschemeyer R. H. 1969; Studies on the sub-unit structure of ovine brain glutamine synthetase. Biochemistry 8:3168–3174
    [Google Scholar]
  21. Willms C. R., Oliver R. M., Henney H. R., Mukherjee B. B., Reed L. E. 1967; α-Keto-acid- dehydrogenase complexes. VI. Dissociation and reconstitution of the dihydrolipoyltransacetylase of Escherichia coli . Journal of Biological Chemistry 242:889–897
    [Google Scholar]
  22. Woolfolk C. A., Shapiro B., Stadtman E. R. 1966; Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherchia coli . Archives of Biochemistry and Biophysics 116:177–192
    [Google Scholar]
  23. Woolfolk C. A., Stadtman E. R. 1967; IV. Reversible dissociation and inactivation of glutamine synthetase from Escherichia coli by the concerted action of EDTA and urea. Archives of Biochemistry and Biophysics 122:174–189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-80-2-485
Loading
/content/journal/micro/10.1099/00221287-80-2-485
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error