1887

Abstract

SUMMARY: The lipid composition of the psychrophilic bacterium (ATCC 15174) has been examined. The chloroform-methanol extractable (i.e. ‘free’) lipid represents nearly 10% of the bacterial mass and is composed of 85% polar lipid and 15% neutral lipid. The polar lipid consists of 46% phosphatidyl ethanolamine, 43% phosphatidyl glycerol and 9% cardiolipin, plus a fourth unidentified minor component which cannot be detected in all extracts. The neutral lipid is characterized by the presence of a mixture of simple waxes, which constitute 86% of this fraction, together with smaller amounts of free fatty acids, alcohols and a ubiquinone, probably Q Simple waxes have not been found previously in such large amounts in true bacteria. The implications of the results of the lipid analysis are discussed with regard to the taxonomic position of

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-80-1-217
1974-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/80/1/mic-80-1-217.html?itemId=/content/journal/micro/10.1099/00221287-80-1-217&mimeType=html&fmt=ahah

References

  1. Asselineau J. 1966 The Bacterial Lipids Paris: Herman;
    [Google Scholar]
  2. Baird-Parker A. C. 1965; The classification of Staphylococci and Micrococci from World-wide sources. Journal of General Microbiology 38:363–387
    [Google Scholar]
  3. Ballesta J. P. G., Sceiaechter M. 1972; Dependence of the rate of synthesis of phosphatidyl ethanol- amine and phosphatidyl glycerol on the rate of growth of Escherichia coli. Journal of Bacteriology no:452–453
    [Google Scholar]
  4. Bishop D. H. L., Pandya K. P., King H. K. 1962; Ubiquinone and Vitamin K in bacteria. Biochemical Journal 83:606–614
    [Google Scholar]
  5. Björkerud S. 1969; Simple scraper for thin-layer chromatograms. Journal of Lipid Research 10:459–460
    [Google Scholar]
  6. Boháček J., Kocur M., Martikec T. 1967; DNA base composition and taxonomy of some Micrococci. Journal of General Microbiology 46:369–376
    [Google Scholar]
  7. Cronan J. E., Vagelos P. R. 1972; Metabolism and function of the membrane phospholipids of Escherichia coli. Biochimica et biophysica acta 265:25–60
    [Google Scholar]
  8. Cullen J., Phillips M. C., Shipley G. G. 1971; The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochemical Journal 125:733–742
    [Google Scholar]
  9. Deuel H. J. 1951 The Lipids 1 p. 3 New York: Interscience;
    [Google Scholar]
  10. Diamond R. J., Rose A. H. 1970; Osmotic properties of spheroplasts from Saccharomyces cerevisiae grown at different temperatures. Journal of Bacteriology 102:311–319
    [Google Scholar]
  11. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. Journal of Lipid Research 5:126–127
    [Google Scholar]
  12. Dunphy P. J., Phillips P. G., Brodie A. F. 1971; Separation and identification of menaquinones from microorganisms. Journal of Lipid Research 12:442–449
    [Google Scholar]
  13. Gallagher I. H. C. 1971; Occurrence of waxes in Acinetobacter. Journal of General Microbiology 68:245–247
    [Google Scholar]
  14. Gorchein A., Neuberger A., Tait G. H. 1968; Metabolic turnover of the lipids of Rhodopseudomonas spheroides. Proceedings of the Royal Society B170:311–318
    [Google Scholar]
  15. Haati E., Nikkari J., Juva K. 1963; Fractionation of serum and skin sterol esters and skin waxes with chromatography on silica gel impregnated with silver nitrate. Acta chemica scandinavica 17:538–540
    [Google Scholar]
  16. Hunter K., Rose A. H. 1972; Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochimica et biophysica acta 260:639–653
    [Google Scholar]
  17. Kates M., Adams G. A., Martin S. M. 1964; Lipids of Serratia marcescens. Canadian Journal of Biochemistry 42:461–479
    [Google Scholar]
  18. Kates M., Kushner D. J., James A. T. 1962; The lipid composition of Bacillus cereus as influenced by the presence of alcohols in the culture medium. Canadian Journal of Biochemistry and Physiology 40:83–94
    [Google Scholar]
  19. Lanéelle M-A., Asselineau J., Castelnuovo G. 1965; Études sur les Mycobactéries et les Nocardiae. IV. Composition des lipids de Mycobacterium rhodocrous, M. pellegrino sp., et de quelques souches de Nocardiae. Annales de l’Institut Pasteur 108:69–82
    [Google Scholar]
  20. Lester R. L., Crane F. L. 1959; The natural occurrence of coenzyme Q and related compounds. Journal of Biological Chemistry 234:2164–2174
    [Google Scholar]
  21. Lester R. L., Hatefi Y., Widmer C., Crane F. L. 1959; Studies on the electron transport system. XX. Chemical and physical properties of the coenzyme Q family of compounds. Biochimica et biophysica acta 33:169–185
    [Google Scholar]
  22. Makula R. A., Finnerty W. R. 1971; Microbial assimilation of hydrocarbons: phospholipid metabolism. Journal of Bacteriology 107:806–814
    [Google Scholar]
  23. Malcolm N. L. 1968; A temperature-induced lesion in amino acid-transfer ribonucleic acid attachment in a psychrophile. Biochimica et biophysica acta 157:493–503
    [Google Scholar]
  24. Marinetti G. V. 1962; Chromatographic separation, identification, and analysis of phosphatides. Journal of Lipid Research 3:1–20
    [Google Scholar]
  25. Mazanec K., Kocur M., Martinec T. 1966; Electron microscopy of ultrathin sections of Micrococcus cryophilus. Canadian Journal of Microbiology 12:465–469
    [Google Scholar]
  26. McLean R. A., Sulzbacher W. L., Mudd S. 1951; Micrococcus cryophilus spec, nov.; A large coccus especially suitable for cytologic study. Journal of Bacteriology 62:723–728
    [Google Scholar]
  27. Morris L. J. 1964 New Biochemical Separations pp. 295–319 James A. T., Morris L. J. Edited by London: Van Nostrand;
    [Google Scholar]
  28. Morrison S. J., Tornabene T. G., Kloose W. E. 1971; Neutral lipids in the study of relationships of members of the family Micrococcaceae. Journal of Bacteriology 108:353–358
    [Google Scholar]
  29. Nichols B. W., Moorhouse R. 1969; The separation, structure and metabolism of monogalactosyldiglyceride species in Chlorella vulgaris. Lipids 4:311–316
    [Google Scholar]
  30. Oldfield E., Chapman D., Derbyshire W. 1972; Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance. Chemistry and Physics of Lipids 9:69–81
    [Google Scholar]
  31. Russell N. J. 1971; Alteration in fatty acid chain length in Micrococcus cryophilus grown AT different temperatures. Biochimica et biophysica acta 231:254–256
    [Google Scholar]
  32. Shaw N. 1968; The detection of lipids on thin-layer chromatograms with the periodate-Schiff reagent. Biochimica et biophysica acta 164:435–436
    [Google Scholar]
  33. Sud I. J., Schaechter M. 1964; Dependence of the content of cell envelopes on the growth rate of Bacillus megaterium. Journal of Bacteriology 88:1612–1617
    [Google Scholar]
  34. Wells M. A., Dittmer J. C. 1963; The use of Sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry 2:1259–1263
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-80-1-217
Loading
/content/journal/micro/10.1099/00221287-80-1-217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error