Survival of and Degradation of Constituents during Starvation Free

Abstract

Summary: The survival of and the degradation of constituents were examined during periods of starvation. Organisms were harvested at the end of the growth phase and were starved, after resuspending in phosphate buffer containing Mg, with vigorous aeration at 30°C. Viability fell gradually to 50 % over a period of 480 h. After 48 h of starvation the dry weight of the organisms was reduced by 35% and the , was decreased from 10 to approximately 1. The fall in dry weight coincided with a decrease of microbial polysaccharide from 25 % to 7 % of the initial dry weight. After this degradation of polysaccharide there was a decrease in microbial protein and a release of ammonia into the supernatant. The contribution of different constituents to the total decrease in dry weight during a period of 240 h starvation was; polysaccharide, 40 %; protein, 25 %; RNA, 6%; total fatty acids, 5%. Loss of viability could not be directly correlated with the utilization of any particular constituent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-78-1-109
1973-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/mic-78-1-109.html?itemId=/content/journal/micro/10.1099/00221287-78-1-109&mimeType=html&fmt=ahah

References

  1. Alexander M. 1964; Biochemical ecology of soil microorganisms.. Annual Review of Microbiology 18:217–252
    [Google Scholar]
  2. Amenta J. S. 1964; A rapid chemical method for quantification of lipids separated by thin-layer chromatography.. Journal of Lipid Research 5:270–272
    [Google Scholar]
  3. Bailey R. W. 1967; Loss of ingested plant carbohydrates from the reticulo-rumen.. New Zealand Journal of Agricultural Science 10:15–32
    [Google Scholar]
  4. Bardi U., Boretti G. 1958; Endogenous metabolism of a proactinomyces: Pseudomonas aeruginosa.. Giornale di Microbiologia 6:91–102
    [Google Scholar]
  5. Batt R. D., Hodges R., Robertson J. G. 1971; Gas chromatography and mass spectrometry of the trimethylsilyl ether methyl ester derivatives of long chain hydroxy acids from Pseudomonas aeruginosa.. Biochimica et biophysica acta 239:368–373
    [Google Scholar]
  6. Batt R. D., Woods D. D. 1951; The oxidation of thymine by an unidentified bacterium.. Biochemical Journal 49:ixx
    [Google Scholar]
  7. Boylen C. W., Ensign J. C. 1970; Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Pseudomonas aeruginosa.. Journal of Bacteriology 103:578–587
    [Google Scholar]
  8. Brock T. D. 1966 Principles of Microbial Ecology p 81 Englewood Cliffs, New Jersey: Prentice Hall;
    [Google Scholar]
  9. Brown O., Clark J. B. 1966; Fragmentation in Pseudomonas aeruginosa.. Journal of General Microbiology 45:525–530
    [Google Scholar]
  10. Clark F. E. 1967; Bacteria in soil. In Soil Biology p 15 Edited by Burgess A., Raw F. London and New York: Academic Press.;
    [Google Scholar]
  11. Clark J. B. 1958; Slime as a possible factor in cell clumping in Pseudomonas aeruginosa.. Journal of Bacteriology 75:400–402
    [Google Scholar]
  12. Clark J. B., Frady J. 1957; Secondary life cycle of Pseudomonas aeruginosa.. Journal of Bacteriology 74:698
    [Google Scholar]
  13. Conn H. J. 1948; The most abundant groups of bacteria in soil.. Bacteriological Reviews 12:257–273
    [Google Scholar]
  14. Conway E. J. 1947 Microdiffusion Analysis and Volumetric Error, 4th edn. p 90 London: Crosby, Lockwood and Son.;
    [Google Scholar]
  15. Corman J., Tsuchiya H. M., Koepsell H. J., Benedict R. G., Kelly S. E., Feger V. H., Dworschack R. G., Jackson R. W. 1957; Oxygen absorption rates in laboratory and pilot-plant equipment.. Applied Microbiology 5:313–318
    [Google Scholar]
  16. Dawes E. A., Ribbons D. W. 1962; Endogenous metabolism of micro-organisms.. Annual Review of Microbiology 16:241–264
    [Google Scholar]
  17. Dawes E. A., Ribbons D. W. 1965; Studies on the endogenous metabolism of Pseudomonas aeruginosa.. Biochemical Journal 95:332–343
    [Google Scholar]
  18. Ensign J. C. 1970; Long-term starvation survival of rod and spherical cells of Pseudomonas aeruginosa.. Journal of Bacteriology 103:569–577
    [Google Scholar]
  19. Gordon R. E. 1966; Some strains in search of a Genus - Corynebacterium, Mycobacterium, Nocardia or what .. Journal of General Microbiology 43:329–343
    [Google Scholar]
  20. Gordon R. E. 1967 Ecology of Soil Bacteria p 293 Liverpool: University Press;
    [Google Scholar]
  21. Holden J. T. 1962; I.. Amino Acid Pools p 101 Edited by Holden J. T. Amsterdam: Elsevier.;
    [Google Scholar]
  22. Lamanna C. 1963; Studies of endogenous metabolism in bacteriology.. Annals of the New York Academy of Sciences 102:517–520
    [Google Scholar]
  23. Midwinter G. G. 1962 Metabolism of Nocardia corallina Ph.D. Thesis, University of Otago; New Zealand:
    [Google Scholar]
  24. Midwinter G. G., Batt R. D. 1960; Endogenous respiration and oxidative assimilation in Pseudomonas aeruginosa.. Journal of Bacteriology 79:9–17
    [Google Scholar]
  25. Munro H. N., Fleck A. 1966 In Methods of Biochemical Analysis vol 14 p 113. Edited by Glick D. New York: Inter-science;
    [Google Scholar]
  26. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose.. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  27. Park D. 1965; Survival of micro-organisms in soil. In Ecology of Soil-Borne Plant Pathogens pp 82–98 Edited by Baker K. F., Snyder W. C. London: John Murray.;
    [Google Scholar]
  28. Postgate J. R., Crumpton J. E., Hunter J. R. 1961; The measurement of bacterial viabilities by slide culture.. Journal of General Microbiology 24:15–24
    [Google Scholar]
  29. Rosen H. 1957; A modified ninhydrin colorimetric analysis for amino acids.. Archives of Biochemistry and Biophysics 67:10–15
    [Google Scholar]
  30. Salton M. R. J. 1953; Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria.. Biochimica et biophysica acta 10:512–523
    [Google Scholar]
  31. Sneath P. H. A. 1962; Longevity of micro-organisms.. Nature, London 195:643–646
    [Google Scholar]
  32. Stickland L. H. 1951; The determination of small quantities of bacteria by means of the biuret reaction.. Journal of General Microbiology 5:698–703
    [Google Scholar]
  33. Tepper E. Z., Karyagina L. A. 1966; Use by Protoactinomyces of a number of aromatic substances occurring in soils together with plant residues and humic substances. Dokl. TSKhA . (Timiryazev. Seliskolkhoz. Akad.) 119 217–224
    [Google Scholar]
  34. Thomas V. J., Doughty N. A., Fletcher R. H., Robertson J. G. 1972; Estimation of microbial viability.. Biometrics 28:947–958
    [Google Scholar]
  35. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric Techniques, 4th edn. Minneapolis: Burgess Publishing Co.;
    [Google Scholar]
  36. Waksman S. A. 1959 The Actinomycetes vol 1 Baltimore: Williams and Wilkins;
    [Google Scholar]
  37. Webb R. B., Clark J. B. 1957; Cytogenetic study of Pseudomonas aeruginosa.. Journal of Bacteriology 74:31–42
    [Google Scholar]
  38. Wilkinson J. F., Munro A. L. S. 1967 In Microbial Physiology and Continuous Culture Proceedings of the Third International Symposium p 173 Edited by Powell E. O., Evans C. G. T., Strange R. S., Tempest D. W. London: Her Majesty’s Stationery Office;
    [Google Scholar]
  39. Zevenhuizen L. P. T. M. 1966; Formation and function of the glycogen-like polysaccharide of Pseudomonas aeruginosa.. Antonie van Leeuwenhoek 32:356–372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-78-1-109
Loading
/content/journal/micro/10.1099/00221287-78-1-109
Loading

Data & Media loading...

Most cited Most Cited RSS feed