1887

Abstract

SUMMARY: Mutations in the gene which lead to inability to use acetate as sole carbon source have been used to select recessive su gene mutations. Of five alleles tested, two, designated and , were suppressible. At least three different genes suppressed the mutation and two genes suppressed the mutation. All five mutations are completely allele specific and will only suppress the mutation for which they were selected. On a glucose medium, where activity is not required for growth, presence of a gene depresses the growth rate. These two facts suggest that the genes act by causing translation errors. Although individually each gene is recessive in a / heterozygote, any two genes in a double heterozygote do not complement. Recessiveness and non-complementation are considered as properties of missense genes involving modified tRNA species and interpreted in terms of tRNA concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-77-1-197
1973-07-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/mic-77-1-197.html?itemId=/content/journal/micro/10.1099/00221287-77-1-197&mimeType=html&fmt=ahah

References

  1. Apirion D. 1966; Altered ribosomes in a suppressor strain of Pseudomonas aeruginosa. Journal of Molecular Biology 16:285–301
    [Google Scholar]
  2. Carbon J., Curry J. B. 1968; Genetically and chemically derived missense suppressor tRNAs with altered enzymic aminoacylation rates. Journal of Molecular Biology 38:201–216
    [Google Scholar]
  3. Casselton L. A. 1965; The production and behaviour of diploids of Pseudomonas aeruginosa. Genetical Research 6:190–208
    [Google Scholar]
  4. Casselton L. A. 1971; Suppressor genes. Science Progress 59:143–160
    [Google Scholar]
  5. Casselton L. A., Casselton P. J. 1966; Control of fruiting of Coprinus lagopus on certain synthetic media. Transactions of the British Mycological Society 49:579–581
    [Google Scholar]
  6. Casselton L. A., Condit A. 1972; A mitochondrial mutant of Pseudomonas aeruginosa. Journal of General Microbiology 72:521–527
    [Google Scholar]
  7. Casselton L. A., Lewis D. 1967; Dilution of gene products in the cytoplasm of heterokaryons in Pseudomonas aeruginosa. Genetical Research 9:63–71
    [Google Scholar]
  8. Day P. R., Roberts C. F. 1969; Complementation in diakryons and diploids of Pseudomonas aeruginosa. Genetics 62:265–270
    [Google Scholar]
  9. Gilmore R. A., Stewart J. W., Sherman F. 1968; Amino acid replacements resulting from supersuppression of a nonsense mutant of yeast. Biochimica et biophysica acta 161:270–272
    [Google Scholar]
  10. Goodman H. M., Abelson J., Landy A., Brenner S., Smith J. D. 1968; Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature, London 217:1019–1024
    [Google Scholar]
  11. Gorini L. 1970; Informational suppression. Annual Reviews of Genetics 4:107–134
    [Google Scholar]
  12. Hawthorne D. C., Mortimer R. K. 1963; Super-suppressors in yeast. Genetics 48:617–620
    [Google Scholar]
  13. Hawthorne D. C., Mortimer R. K. 1968; Genetic mapping of nonsense suppressors in yeast. Genetics 60:735–742
    [Google Scholar]
  14. Lewis D. 1961; Genetical analysis of methionine suppressors in Coprinus. Genetical Research 2:141–155
    [Google Scholar]
  15. Morgan D. H. 1966; Suppression of ‘purple’ in Coprinus lagopus-an anomalous genetic situation. Genetical Research 7:195–206
    [Google Scholar]
  16. Pinto-Lopes J., Almeida M. G. 1972; Coprinus lagopus’, a confusing name as applied to several species. Portugaliae acta biologica (B) 11:167–204
    [Google Scholar]
  17. Pontecorvo G. 1963; Microbial genetics; retrospect and prospect. Proceedings of the Royal Society B 158:1–23
    [Google Scholar]
  18. Riddle D. L., Roth J. R. 1972; Frameshift suppressors III. Effects of suppressor mutations on transfer RNA. Journal of Molecular Biology 66:495–506
    [Google Scholar]
  19. Rosset R., Gorini L. 1969; A ribosomal ambiguity mutation. Journal of Molecular Biology 39:95–112
    [Google Scholar]
  20. Squires C., Carbon J. 1971; Normal and mutant glycine transfer RNAs. Nature New Biology 233:274–277
    [Google Scholar]
  21. Stewart J. W., Sherman F. 1972; Demonstration of UAG as a nonsense codon in Bakers’ yeast by amino-acid replacements in iso-1-cytochrome c. Journal of Molecular Biology 68:429–443
    [Google Scholar]
  22. Stewart J. W., Sherman F., Jackson M., Thomas F. L., Shipman N. 1972; Demonstration of the UAA ochre codon in bakers’ yeast by amino-acid replacements in iso-1-cytochrome c. Journal of Molecular Biology 68:83–96
    [Google Scholar]
  23. Todd N. K., Casselton L. A. 1972; Non-complementation between recessive suppressor gene mutations in Pseudomonas aeruginosa. Heredity 28:274
    [Google Scholar]
  24. Yanofsky C. 1952; The effects of gene change on tryptophan desmolase formation. Proceedings of the National Academy of Sciences of the United States of America 38:215–226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-77-1-197
Loading
/content/journal/micro/10.1099/00221287-77-1-197
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error