Inhibition by 3-Deoxy-3-Fluoro--Glucose of the Utilization of Lactose and Other Carbon Sources by Free

Abstract

Summary: 3-Deoxy-3-fluoro--glucose (3FG) was converted to 3FG-6-phosphate by the phosphoenolpyruvate-dependent phosphotransferase system in frozen and thawed Up to 0.03g 3FG was taken up/g bacterial dry wt. Uptake of 3FG was not lethal, though 3FG at 0.1 to 10 mM completely prevented or severely inhibited utilization of lactose, fructose, glycerol, succinate, acetate and pyruvate. It prevented lactose utilization by inhibition of the synthesis and activity of both -galactosidase and galactoside permease. 3FG-resistant mutants were isolated which were deficient in the Enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system specific for glucose and for 3FG. Our findings support the view that the ‘glucose effect’ may depend upon glucose itself or a glucose derivative, rather than upon catabolic products.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-76-2-305
1973-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/2/mic-76-2-305.html?itemId=/content/journal/micro/10.1099/00221287-76-2-305&mimeType=html&fmt=ahah

References

  1. Adhya S., Echols M. 1966; Glucose effect and the galactose enzymes of Escherichia coli: Correlation between glucose inhibition of induction and inducer transport. Journal of Bacteriology 92:601–608
    [Google Scholar]
  2. Brunt R. V., Taylor N. F. 1967; The metabolism of 3-deoxy-3-fluoro-d-glucose by Saccharomyces cerevisiae . Biochemical Journal 105:41–43C
    [Google Scholar]
  3. Buck K. W., Foster A. B., Hems R., Webber J. M. 1966; A new route to 3-deoxy-3-fluoro-d-glucose. Carbohydrate Research 3:137–138
    [Google Scholar]
  4. Cohn M., Horibata K. 1959; Inhibition by glucose of the induced synthesis of the β-galactosidase enzyme system of Escherichia coli. Analysis of maintenance. Journal of Bacteriology 78:601–612
    [Google Scholar]
  5. Dixon M., Webb E. C. 1964 Enzymes, 2nd edn. New York: Academic Press;
    [Google Scholar]
  6. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  7. Foster A. B., Hems R., Webber J. M. 1967; Fluorinated carbohydrates. Part I. 3-deoxy-3-fluoro-d-glucose. Carbohydrate Research 5:292–301
    [Google Scholar]
  8. Fraenkel D. G. 1968; The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli . Journal of Biological Chemistry 243:6458–6463
    [Google Scholar]
  9. Ghosh S., Ghosh D. 1968; Probable role of a membrane bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars. Indian Journal of Biochemistry 5:49–52
    [Google Scholar]
  10. Goldenbaum P. E., Broman R. L., Dobrogosz W. J. 1970; Cyclic 3′,5′-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli . Journal of Bacteriology 103:663–670
    [Google Scholar]
  11. Hough L., Jones J. K. N. 1962; Chromatography on paper. In Methods in Carbohydrate Chemistry, vol 1 pp 21–30 Edited by Whistler R. L., Wolfrom M. L. New York: Academic Press;
    [Google Scholar]
  12. Hugget A. St. G., Nixon D. A. 1957; Enzymic determination of blood glucose. Biochemical Journal 66:12p
    [Google Scholar]
  13. Jacob F., Monod J. 1961; On the regulation of gene activity. Cold Spring Harbor Symposium on Quantitative Biology 26:195–211
    [Google Scholar]
  14. Kornberg H. L., Smith J. 1972; Genetic control of glucose uptake by Escherichia coli . FEBS Letters 20:270–272
    [Google Scholar]
  15. Kundig W., Ghosh S., Roseman S. 1964; Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proceedings of the National Academy of Sciences of the United States of America 52:1067–1074
    [Google Scholar]
  16. Lederberg J. 1950; The β-d-galactosidase of Escherichia coli k12. Journal of Bacteriology 60:381–392
    [Google Scholar]
  17. Lengeler J. 1966; Untersuchungen zum Glukose-Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli . Zeitschrift für Vererbungslehre 98:203–229
    [Google Scholar]
  18. McGinnis J. F., Paigen K. 1969; Catabolite inhibition: a general phenomenon in the control of carbohydrate utilisation. Journal of Bacteriology 100:902–913
    [Google Scholar]
  19. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symposium on Quantitative Biology 26:249–256
    [Google Scholar]
  20. Miles R. J. 1972 The effect of 3-deoxy-3-fluoro-d-glucose on some micro-organisms Ph.D. Thesis, University of London;
    [Google Scholar]
  21. Miles R. J., Pirt S. J. 1969; The effect of 3-deoxy-3-fluoro-d-glucose, a non-metabolisable sugar, on the metabolism of Saccharomyces cerevisiae . Biochemical Journal 114:10p
    [Google Scholar]
  22. Miles R. J., Pirt S. J. 1972; Inhibition of the utilisation of lactose and other carbon sources by 3-deoxy-3-fluoro-d-glucose in Escherichia coli . Biochemical Journal 127:60p
    [Google Scholar]
  23. Palmer A. K. 1971 Some fluoro-carbohydrates Ph.D. Thesis, University of London;
    [Google Scholar]
  24. Pazur J. H. 1966; Glucose oxidase from Aspergillus niger . In Methods in Enzymology vol 9 pp 82–87 Edited by Colowick S. P., Kaplan N. O. New York: Academic Press;
    [Google Scholar]
  25. Perlman R. L., De Crombrugghe B., Pastan I. 1969; Cyclic AMP regulates catabolite and transient repression in Escherichia coli . Nature, London 223:810–812
    [Google Scholar]
  26. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London B 163:224–231
    [Google Scholar]
  27. Rickenberg H. V., Cohen G. N., Buttin G., Monod J. 1956; La galactoside-perméase d’Escherichia coli. Annales de l’Institut Pasteur de Lille 91:829–857
    [Google Scholar]
  28. Tyler B., Loomis W. F., Magasanik B. 1967; Transient repression of the lac operon. Journal of Bacteriology 94:2001–2011
    [Google Scholar]
  29. White F. H., Taylor N. F. 1970; Metabolism of 3-deoxy-3-fluoro-d-glucose by Pseudomonas fluorescens . FEBS Letters 11:268–270
    [Google Scholar]
  30. Winkler H. H., Wilson T. M. 1966; The role of energy coupling in the transport of β-galactosides in Escherichia coli . Journal of Biological Chemistry 241:2200–2211
    [Google Scholar]
  31. Winkler H. H., Wilson T. M. 1967; Inhibition of β-galactoside transport by substrates of the glucose transport system in Escherichia coli . Biochimica et biophysica acta 135:1030–1051
    [Google Scholar]
  32. Woodward B., Taylor N. F., Brunt R. V. 1969; Effect of 3-deoxy-3-fluoro-d-glucose on Saccharomyces cerevisiae . Biochemical Journal 114:445–447
    [Google Scholar]
  33. Woodward B., Taylor N. F., Brunt R. V. 1971; Effect of 3-deoxy-3-fluoro-d-glucose on glycolytic intermediates and adenine nucleotides in resting cells of Saccharomyces cerevisiae . Biochemical Pharmacology 20:1071–1077
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-76-2-305
Loading
/content/journal/micro/10.1099/00221287-76-2-305
Loading

Data & Media loading...

Most cited Most Cited RSS feed