1887

Abstract

SUMMARY: A bead column technique is described for the separation of flagellates from amoebae and cysts. It is shown that DO induces a rapid reversion of these flagellates to amoebae, and the behaviour and structure of the reverting cells is described. The amoebae are viable in high concentrations of DO, and when returned to suspension in HO readily retransform to the flagellate stage. The reversion of flagellates to amoebae is insensitive to cycloheximide, but the subsequent retransformation to flagellate can be prevented by both actinomycin D and cycloheximide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-75-2-351
1973-04-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/2/mic-75-2-351.html?itemId=/content/journal/micro/10.1099/00221287-75-2-351&mimeType=html&fmt=ahah

References

  1. Balamuth W. 1965; Amoebo-flagellate transformation as a model of reversible cyto-differentiation. In Progress in Protozoology p 40 Amsterdam: Excerpta Medica Foundation;
    [Google Scholar]
  2. Chang S. L. 1958; Cytological and ecological observations on the flagellate transformation of Naegleria gruberi. Journal of General Microbiology 18:579–585
    [Google Scholar]
  3. Collins C. J., Bowman N. S. 1970 Isotope Effects in Chemical Reactions American Chemical Society Monograph New York: Van Nostrand Reinhold;
    [Google Scholar]
  4. Dingle A. D., Fulton C. 1966; Development of the flagellar apparatus of Naegleria. Journal of Cell Biology 31:43–54
    [Google Scholar]
  5. Flaumenhaft E., Bose S., Crespi H. L., Katz J. 1965; Deuterium isotope effects in cytology. International Review of Cytology 18:313–361
    [Google Scholar]
  6. Fulton C. 1970; Amebo-flagellates as research partners: the laboratory biology of Naegleria and Tetramitus.. In Methods in Cell Physiology vol iv pp 341–476 Edited by Prescott D. M. New York: Academic Press;
    [Google Scholar]
  7. Gaw H. 1936; Physiology of the contractile vacuole in ciliates. 4. The effect of heavy water. Archiv für Protistenkunde 87:213–224
    [Google Scholar]
  8. Inoue S., Sato H. 1967; Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. Journal of General Physiology 50:259–288
    [Google Scholar]
  9. Katz J. J., Crespi H. L. 1970; Isotope effects in biological systems. In Isotope Effects in Chemical Reactions pp 286–363 Edited by Collins C. J., Bowman N. S. American Chemical Society Monograph New York: Van Nostrand Reinhold;
    [Google Scholar]
  10. Khalil M. T. M., Lauffer M. A. 1967; Polymerization - depolymerization of tobacco mosaic virus protein. X. Effect of D2O. Biochemistry 6:2474–2480
    [Google Scholar]
  11. Kitching J. A., Padfield J. E. 1960; The physiology of contractile vacuoles. XI. Effects of heavy water on the water balance of a suctorian. Journal of Experimental Biology 37:73–80
    [Google Scholar]
  12. Lastovica A. J., Dingle A. D. 1971; Superprecipitation of an actomyosin-like complex isolated from Naegleria gruberi amoebae. Experimental Cell Research 66:337–345
    [Google Scholar]
  13. Marsland D. 1964; Pressure - temperature studies on amoeboid movement and related phenomena: an analysis of the effects of heavy water (D2O) on the form, movement, and gel structure of Amoeba proteus. In Primitive Motile Systems in Cell Biology pp 173–187 Edited by Allen R. D., Kamiya N. New York: Academic Press;
    [Google Scholar]
  14. Marsland D., Tilney L. G., Hirschfield M. 1971; Stabilizing effects of D2O on the microtubular components and needle-like form of heliozoan axopods: a pressure-temperature analysis. Journal of Cellular Physiology 77:187–193
    [Google Scholar]
  15. Némethy G., Scheraga H. A. 1964; Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. Journal of Chemical Physics 41:680–689
    [Google Scholar]
  16. Pittam M. D. 1963; Studies of an amoebo-flagellate, Naegleria gruberi. Quarterly Journal of Microscopical Science 104:513–529
    [Google Scholar]
  17. Preston T. M., O’Dell D. S. 1971; Synergistic effect of polymixin B with other antibiotics on the transformation of Naegleria gruberi. Experimental Cell Research 68:465–466
    [Google Scholar]
  18. Rudzinska M. A., Vickerman K. 1968; The fine structure. In Infectious Blood Diseases of Man and Animals vol i pp 217–306 Edited by Weinman D., Ristic M. New York: Academic Press;
    [Google Scholar]
  19. Schuster F. 1963; An electron microscope study of the amoebo-flagellate, Naegleria gruberi (Schardinger). I. The amoeboid and flagellate stages. Journal of Protozoology 10:297–313
    [Google Scholar]
  20. Thomson J. F. 1963 Biological Effects of Deuterium Oxford: Pergamon Press;
    [Google Scholar]
  21. Tilney L. G. 1968; The assembly of microtubules and their role in the development of cell form. Developmental Biology(Suppl. 2) pp 63–102
    [Google Scholar]
  22. Todd S. R. 1972; Effects of high hydrostatic pressure on transformation in Naegleria gruberi. Society for Experimental Biology Symposium 26:485–486
    [Google Scholar]
  23. Tomita K., Rich A., De Lozé C., Blout E. R. 1962; The effect of deuteration on the geometry of the α-helix. Journal of Molecular Biology 4:83–92
    [Google Scholar]
  24. Warren L., Glick M. C., Nass M. K. 1966; Membranes of animal cells. 1. Methods of isolation of the surface membrane. Journal of Cellular Physiology 68:269–288
    [Google Scholar]
  25. Yuyama S. 1971; The effects of selected chemical agents on the amoeba-flagellate transformation in Naegleria gruberi. Journal of Protozoology 18:337–343
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-75-2-351
Loading
/content/journal/micro/10.1099/00221287-75-2-351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error