Construction and Analysis of Tetraploid Yeast Sets for Gene Dosage Studies Free

Abstract

SUMMARY: The following requirements should be met by polyploid yeast sets optimally suited for gene dosage studies: isogenicity; homozygous wild-type genetic background; amenability to genetic analysis and preferably normal segregation of the mating type alleles; ploidy number as high as possible, but compatible with the above requirements.

The present study shows that tetraploid yeast sets which meet all these requirements may be developed with relative ease by the controlled cross procedure. The aa and αα diploids which constitute the parents of the crosses are obtained either by the selection of cells appearing spontaneously in haploid cultures upon prolonged cultivation (14 clones have thus been obtained), or by the choice of appropriate genotypes among the progeny of tetraploid clones.

This paper reports the segregation data of a typical complete genetic analysis in which tetraploid clones are reduced by two successive meioses to the haploid state; together with first meiosis segregation data from about seventy tetraploid clones.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-75-1-23
1973-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/mic-75-1-23.html?itemId=/content/journal/micro/10.1099/00221287-75-1-23&mimeType=html&fmt=ahah

References

  1. Béchet J., Grenson M., Wiame J. M. 1970; Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. European Journal of Biochemistry 12:31–39
    [Google Scholar]
  2. Bruenn J., Mortimer R. K. 1970; Isolation of monosomics in yeast. Journal of Bacteriology 102:548–551
    [Google Scholar]
  3. Ciferri O., Sora S., Tiboni O. 1969; Effect of gene dosage on tryptophan synthetase activity in Saccharomyces cerevisiae. Genetics 61:567–576
    [Google Scholar]
  4. Emeis C. C., Windisch S. 1960; Prüfung der Kernwertigkeit polyploider Hefenmit der Massenisolations technik. Naturwissenschaften 47:210–211
    [Google Scholar]
  5. Fincham J. R. S., Day P. R. 1965 Fungal Genetics Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  6. Fowell R. R. 1952; Sodium acetate agar as a sporulation medium for yeast. Nature, London 170:578
    [Google Scholar]
  7. Grenson M., Mousset M., Wiame J. M., Béchet J. 1966; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. Biochimica et biophysica acta 127:325–338
    [Google Scholar]
  8. Hennaut C., Hilger F., Grenson M. 1970; Space limitation for permease insertion in the cytoplasmic membrane of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 39:666–671
    [Google Scholar]
  9. Hilger F., Culot M., Minet M., Piérard A., Grenson M., Wiame J. M. 1973; Studies on the kinetics of the enzyme sequence mediating arginine synthesis in Saccharomyces cerevisiae. Journal of General Microbiology 75:33–41
    [Google Scholar]
  10. Lacroute F., Piérard A., Grenson M., Wiame J. M. 1965; The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. Journal of General Microbiology 40:127–142
    [Google Scholar]
  11. Laskowski W. 1960; Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. I. Aufbau homozygoter Stämme und Dosiseffektkurven für ionisierende Strahlen, UV und organische Peroxyde. Zeitschrift für Naturforschung 156:495–506
    [Google Scholar]
  12. Laskowski W. 1962; Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. IV. Über den Aufbau weitestgehend isogener, homozygoter penta-und hexaploider Stämme sowie, den Einfluss bestimmter mutierter Allele auf die Strahlenresistenz. Zeitschrift für Naturforschung 176:93–188
    [Google Scholar]
  13. Leupold U. 1956a; Tetraploid inheritance in Saccharomyces. Journal of Genetics 54:411–0426
    [Google Scholar]
  14. Leupold U. 1956b; Tetrad analysis of segregation in autotetraploids. Journal of Genetics 54:427–439
    [Google Scholar]
  15. Leupold U., Hottinger H. 1954; Some data on segregation in Saccharomyces. Heredity 8:243–258
    [Google Scholar]
  16. Lindegren C. C., Lindegren G. 1951; Tetraploid Saccharomyces. Journal of General Microbiology 5:885–893
    [Google Scholar]
  17. Mortimer R. K. 1958; Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiation Research 9:312–326
    [Google Scholar]
  18. Mortimer R. K., Hawthorne D. C. 1966; Yeast genetics. Annual Review of Microbiology 20:151–168
    [Google Scholar]
  19. Nelson N. M., Douglas H. C. 1963; Gene dosage and galactose utilization by Saccharomyces tetraploids. Genetics 48:1585–1591
    [Google Scholar]
  20. Pomper S. 1952a; The isolation of triploid yeast. Bacteriological Proceedings pp 42–43
    [Google Scholar]
  21. Pomper S. 1952b; The isolation of triploid Saccharomyces cerevisiae. Nature, London 170:892–893
    [Google Scholar]
  22. Pomper S., Burkholder P. R. 1949; Studies in the biochemical genetics of yeast. Proceedings of the National Academy of Sciences of the United States of America 35:456–464
    [Google Scholar]
  23. Pomper S., Daniels K. M., McKee D. W. 1954; Genetic analysis of polyploid yeast. Genetics 39:343–355
    [Google Scholar]
  24. Reichert U. 1967; Gendosiswirkungen in einem ad2 Mutantensystem bei Saccharomyces. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 205:63–68
    [Google Scholar]
  25. Roman H. 1962; Sources of variability in vegetative yeast cultures. Symposium held at the 8th International Congress of Microbiology, Montréal pp 306–312 University of Toronto Press;
    [Google Scholar]
  26. Roman H., Hawthorne D. C., Douglas H. C. 1951; Polyploidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proceedings of the National Academy of Sciences of the United States of America 37:79–84
    [Google Scholar]
  27. Roman H., Phillips M. M., Sands S. M. 1955; Studies of polyploid Saccharomyces. I. Tetraploid segregation. Genetics 40:546–561
    [Google Scholar]
  28. Roman H., Sands S. M. 1953; Heterogeneity of clones of Saccharomyces derived from haploid ascospores. Proceedings of the National Academy of Sciences of the United States of America 39:171–179
    [Google Scholar]
  29. Scheda A. 1963; Untersuchungen über die Maltose- und Glucosevergärung bei homozygoten Hefestäm-men mit verschiedenen Genomzahlen. Archiv für Mikrobiologie 45:65–100
    [Google Scholar]
  30. Slonimski P. P., Archer R., Péré G., Sels A., Somlo M. 1965 Mécanismes de régulation des activités cellulaires chez les microorganismes pp 435–461 Paris: Editions du Centre National de la Recherche Scientifique;
    [Google Scholar]
  31. Thuriaux P., Ramos F., Wiame J. M., Grenson M., Béchet J. 1968; Sur l’existence de gènes régulateurs affectant simultanément la synthése des enzymes biosynthétiques et cataboliques de l’arginine chez Saccharomyces cerevisiae. Archives internationales de physiologie et de biochimie 76:955
    [Google Scholar]
  32. Townsend G. F., Lindegren C. C. 1954; Characteristic growth patterns of the different members of a polyploid series of Saccharomyces. Journal of Bacteriology 67:480–483
    [Google Scholar]
  33. Wiame J. M. 1970; Mechanism of the interaction between the anabolism and catabolism of arginine in Saccharomyces cerevisiae. Report to the 10th International Congress of Microbiology, Mexico pp 243–253
    [Google Scholar]
  34. Wiame J. M. 1971; The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. In Current Topics in Cellular Regulation vol iv pp 1–38 Edited by Horecker B., Stadtman E. New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-75-1-23
Loading
/content/journal/micro/10.1099/00221287-75-1-23
Loading

Data & Media loading...

Most cited Most Cited RSS feed