1887

Abstract

SUMMARY: Genes which are involved in anaerobic growth with nitrate or nitrite as terminal electron acceptor in were mapped by interrupted mating and linkage analysis after conjugation. Times of entry were mostly consistent with the linkage frequencies. Late markers were not located precisely. A gene order was obtained for the genes involved in dissimilatory nitrate () and nitrite reduction () and anaerobical growth () and for some already known auxotrophic genes. A mutant unable to grow aerobically () was found. The mutation appeared to be an early marker. The cytochrome spectra of mutants and part of the cytochrome oxidase activities were abnormal in that haem was absent. Most of the mutants were pleiotropic. mutants were affected in assimilatory and dissimilatory nitrate reductase, and and mutants lacked assimilatory and dissimilatory nitrate reductase and xanthine dehydrogenase. In mutants high concentrations of molybdate restored xanthine dehydrogenase and assimilatory and dissimilatory nitrate reductase and, consequently, anaerobic growth. Just as in the mutants, which had a normal respiratory system, the denitrifying system and the cytochrome system in mutants were normal. It is therefore unlikely that and mutants synthesize defective energy generating systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-74-1-97
1973-01-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/mic-74-1-97.html?itemId=/content/journal/micro/10.1099/00221287-74-1-97&mimeType=html&fmt=ahah

References

  1. Arst H. N. Jun., MacDonald D. W., Cove D. J. 1970; Molybdate metabolism in Aspergillus nidulans I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Molecular and General Genetics 108:129–145
    [Google Scholar]
  2. Azoulay E. 1964; Influence des conditions de culture sur la respiration de Pseudomonas aeruginosa. Biochimica et biophysica acta 92:458–464
    [Google Scholar]
  3. Azoulay E., Couchoud-Beaumont P. 1965; Étude de la cytochrome-oxidase de Pseudomonas aeruginosa. Biochimica et biophysica acta 110:301–311
    [Google Scholar]
  4. Azoulay E., Puig J., Couchoud-Beaumont P. 1969; Étude des mutants chlorate-résistants chez Escherichia coli k12. I. Reconstitution in vitro de l’activité-réductase particulaire chez Escherichia coli k12. Biochimica et biophysica acta 171:238–252
    [Google Scholar]
  5. Fewson C. A., Nicholas D. J. D. 1961; Nitrate reductase from Pseudomonas aeruginosa. Biochimica et biophysica acta 49:335–349
    [Google Scholar]
  6. Glaser J. H., De Moss J. A. 1971; Phenotypic restoration of nitrate reductase activity in chlD mutants of Escherichia coli. Journal of Bacteriology 108:854–860
    [Google Scholar]
  7. van Hartingsveldt J., Marinus M. G., Stouthamer A. H. 1971; Mutants of Pseudomonas aeruginosa blocked in nitrate or nitrate dissimilation. Genetics 67:469–482
    [Google Scholar]
  8. Holloway B. W., Monk M., Hodgins L., Fargie B. 1962; Effects of radiation on transduction in Pseudomonas aeruginosa. Virology 18:89–94
    [Google Scholar]
  9. Iwasaki H., Matsubara T. 1971; Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis. Journal of Biochemistry 69:847–857
    [Google Scholar]
  10. Ketchum P. A., Cambier H. Y., Frazier W. A. III, Madansky C. H., Nason A. 1970; In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase system of higher animals. Proceedings of the National Academy of Sciences of the United States of America 66:1016–1023
    [Google Scholar]
  11. Kodama T. 1970; Effects of growth conditions on formation of the cytochrome system of a denitrifying bacterium, Pseudomonas stutzeri. Plant and Cell Physiology 11:231–239
    [Google Scholar]
  12. Lam Y., Nicholas D. J. D. 1969; A nitrite reductase with cytochrome oxidase activity from Micrococcus denitrificans. Biochimica et biophysica acta 180:459–472
    [Google Scholar]
  13. Lester R. L., De Moss J. A. 1971; Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. Journal of Bacteriology 105:1006–1014
    [Google Scholar]
  14. Loutit J. S. 1969; Investigation of the mating system of Pseudomonas aeruginosa strain 1. IV. Mapping of distal markers. Genetical Research 13:91–98
    [Google Scholar]
  15. Loutit J. S., Davis P. F. 1970; Mutants of Pseudomonas aeruginosa strain 1 with unusual acetohydroxy-acid synthetase enzymes. Biochimica et biophysica acta 222:222–225
    [Google Scholar]
  16. Loutit J. S., Pearce L. E., Marinus M. G. 1968; Investigation of the mating system of Pseudomonas aeruginosa strain 1.I. Kinetic studies. Genetical Research 12:29–36
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randell R. J. 1951; Protein measurement with the Folin reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  18. Newton N. 1969; The two-haem nitrite reductase of Micrococcus denitrificans. Biochimica et biophysica acta 185:316–331
    [Google Scholar]
  19. Pateman J. A., Cove D. J., Rever B. M., Roberts D. B. 1964; A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature, London 201:58–60
    [Google Scholar]
  20. Piéchaud M., Puig J., Pichinoty F., Azoulay E., Le Minor L. 1967; Mutations affectant la nitrate réductase A et d’autre enzymes bactériennes d’oxydoréduction. Etude préliminaire. Annales de l’Institut Pasteur 112:24–37
    [Google Scholar]
  21. Stanier R. Y., Palleroni N. J., Douderoff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  22. Stanisich V. A., Holloway B. W. 1971; Chromosome transfer in Pseudomonas aeruginosa mediated by R factors. Genetical Research 17:169–172
    [Google Scholar]
  23. Stanisich V. A., Holloway B. W. 1969; Conjugation in Pseudomonas aeruginosa. Genetics 61:327–339
    [Google Scholar]
  24. Stouthamer A. H. 1967a; Nitrate reduction in Aerobacter aerogenes. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant against chlorate. Archiv für Mikrobiologie 56:68–75
    [Google Scholar]
  25. Stouthamer A. H. 1967b; Nitrate reduction in Aerobacter aerogenes. II. Characterization of mutants blocked in the reduction of nitrate and chlorate. Archiv für Mikrobiologie 56:76–80
    [Google Scholar]
  26. Stouthamer A. H. 1969; A genetical and biochemical study of chlorate-resistant mutants of Salmonella typhimurium. Antonie van Leeuwenhoek 35:505–521
    [Google Scholar]
  27. Stouthamer A. H., Bettenhausen C., van Hartingsveldt J., Van’T Riet J., Planta R. J. 1967; Nitrate reduction in Aerobacter aerogenes. III. Nitrate reduction, chlorate resistance and formate metabolism in mutant strains. Archiv für Mikrobiologie 58:228–247
    [Google Scholar]
  28. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric techniques, 4th edn. pp. 162–165 Minneapolis: Burgess Publishing Company;
    [Google Scholar]
  29. Van’T Riet J., Stouthamer A. H., Planta R. J. 1968; Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. Journal of Bacteriology 96:1455–1464
    [Google Scholar]
  30. Woldendorp J. W. 1963 The influence of living plants on denitrification Ph.D. Thesis; Landbouwhoge School, Wageningen, The Netherlands:
    [Google Scholar]
  31. Yamanaka T., Okunuki K. 1963; Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to the biological specificity. Biochimica et biophysica acta 67:379–393
    [Google Scholar]
  32. Yamanaka T., Ota A., Okunuki K. 1961; A nitrite reducing system reconstructed with purified cytochrome components of Pseudomonas aeruginosa. Biochimica et biophysica acta 53:294–308
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-74-1-97
Loading
/content/journal/micro/10.1099/00221287-74-1-97
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error