1887

Abstract

SUMMARY: Bacteria of the acidovorans Pseudomonas group ( and ) utilize β-carboxy--muconate for growth via the β-ketoadipate pathway. Since protocatechuate, the only known metabolic precursor of β-carboxy--muconate, is utilized by these bacteria via another metabolic pathway, it appears that aa-carboxy--muconate can serve as a natural growth substrate.

The members of the acidovorans group are freely permeable to β-carboxy--muconate and in this respect they differ from other Pseudomonas species.

Unlike other bacteria ( and other species of ) the acidovorans group of do not use protocatechuate or β-ketoadipate as an inducer of β-carboxy--mucortate lactonizing enzyme and -carboxy muconolactone decarboxylase. In and the inducer of these enzymes appears to be β-carboxy--muconate (or -carboxymuconolactone). In , but not in , aa-ketoadipate serves as an inducer of muconolactone isomerase. Therefore strains of and may be identified by the unique mechanism that they employ to govern synthesis of the enzymes of the β-ketoadipate pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-73-3-455
1972-12-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/3/mic-73-3-455.html?itemId=/content/journal/micro/10.1099/00221287-73-3-455&mimeType=html&fmt=ahah

References

  1. Azoulay E. 1966; Regulation of biosynthesis and activity of catechol oxygenases in Pseudomonas . Bulletin de la Société Française de Physiologie Végétale 12:111–121
    [Google Scholar]
  2. Bayly R. C., Dagley S. 1969; Oxenoic acids as metabolites in the bacterial degradation of catechols. Biochemical Journal 111:303–307
    [Google Scholar]
  3. Cain R. B., Farr D. R. 1968; Metabolism of arylsulphonates by micro-organisms. Biochemical Journal 106:859–877
    [Google Scholar]
  4. Cánovas J. L., Ornston L. N., Stanier R. Y. 1967; Evolutionary significance of metabolic control systems. Science, New York 156:1695–1699
    [Google Scholar]
  5. Cánovas J. L., Stanier R. Y. 1967; Regulation of the β-ketodipate pathway in Moraxella calcoaceticus. I. General aspects. European Journal of Biochemistry. 1:289–300
    [Google Scholar]
  6. Dagley S., Chapman P. J., Gibson D. T., Wood J. M. 1964; Degradation of the benzene nucleus by bacteria. Nature, London 202:775–778
    [Google Scholar]
  7. Dagley S., Evans W. C., Ribbons D. W. 1960; New pathways in the oxidative metabolism of aromatic compounds by micro-organisms. Nature, London 188:560–566
    [Google Scholar]
  8. Dagley S., Geary P. J., Wood J. M. 1964; The metabolism of protocatechuate by Pseudomonas testosteroni . Biochemical Journal 109:559–569
    [Google Scholar]
  9. Davies J. E., Evans W. C. 1964; Oxidative metabolism of naphthalene by soil pseudomonads. The ring fission mechanism. Biochemical Journal 91:251–261
    [Google Scholar]
  10. Elvidge J. A., Linstead R. A., Orkin B. A., Sims P., Baer H., Pattison D. P. 1950; Unsaturated lactones and related substances. Part IV. Lactonic products derived from muconic acid. Journal of the Chemical Society,2228–2235
    [Google Scholar]
  11. Feist C. F., Hegeman G. D. 1969; Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Journal of Bacteriology 100:869–877
    [Google Scholar]
  12. Francis M. J. O., Hughes D. E., Kornberg H. L., Phizackerly P. J. R. 1963; The oxidation of l-malate by Pseudomonas sp. Biochemical Journal 89:430–438
    [Google Scholar]
  13. Hardisson C., Sala- Trepat J. M., Stanier R. Y. 1969; Pathways for the oxidation of aromatic compounds by Azotobacter. Journal of General Microbiology 59:1–11
    [Google Scholar]
  14. Hegeman G. D. 1966; Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. Journal of Bacteriology 91:1140–1154
    [Google Scholar]
  15. Johnson B. F., Stanier R. Y. 1971a; Dissimilation of aromatic compounds by Alcaligenes eutrophus . Journal of Bacteriology 107:468–475
    [Google Scholar]
  16. Johnson B. F., Stanier R. Y. 1971b; Regulation of the β-ketoadipate pathway in Alcaligenes eutrophus . Journal of Bacteriology 107:476–485
    [Google Scholar]
  17. Kemp M.B., Hegeman G. D. 1968; Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa . Journal of Bacteriology 96:1488–1499
    [Google Scholar]
  18. Macdonald D. L., Stanier R. Y., Ingraham J. L. 1954; The enzymatic formation of β-carboxy-muconic acid. Journal of Biological Chemistry 210:809–820
    [Google Scholar]
  19. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas . Journal of General Microbiology 43:273–292
    [Google Scholar]
  20. Meagher R. B., McCorkle G. M., Ornston M. K., Ornston L. N. 1972; Inducible uptake system for β-carboxy- cis, cis-muconate in a permeability mutant of Pseudomonas putida . Journal of Bacteriology iii:465–473
    [Google Scholar]
  21. Ono K., Nozaki M., Hayaishi O. 1970; Purification and some properties of protocatechuate 4,5- dioxygenase. Biochimica et biophysica acta 220:224–238
    [Google Scholar]
  22. Ornston L. N. 1966a; The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. Journal of Biological Chemistry 241:3787–3794
    [Google Scholar]
  23. Ornston L. N. 1966b; The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. III. Enzymes of the catechol pathway. Journal of Biological Chemistry 241:3795–3799
    [Google Scholar]
  24. Ornston L. N. 1966c; The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. IV. Regulation. Journal of Biological Chemistry 241:3800–3810
    [Google Scholar]
  25. Ornston L.N. 1971; Regulation of catabolic pathways in Pseudomonas . Bacteriological Reviews 35:87–116
    [Google Scholar]
  26. Ornston L. N., Stanier R. Y. 1966; The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry. Journal of Biological Chemistry 241:3776–3786
    [Google Scholar]
  27. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11
    [Google Scholar]
  28. Rann D. L., Cain R. B. 1969; The regulation of the enzymes of aromatic ring fission in an Actinomycete. Biochemical Journal 114:77 p.
    [Google Scholar]
  29. Ribbons D. W. 1970; Specificity of monohydric phenol oxidations by meta cleavage pathways in Pseudomonas aeruginosa T1. Archiv für Mikrobiologie 74:103–115
    [Google Scholar]
  30. Riegel B., Lilienfeld W. M. 1954; The synthesis of β-ketoesters by the decomposition of acylated malonic esters. Journal of the American Chemical Society 67:1273–1275
    [Google Scholar]
  31. Robert-Gero M., Poiret M., Stanier R. Y. 1969; The function of the β-ketoadipate pathway in Pseudomonas acidovorans . Journal of General Microbiology 57:207–214
    [Google Scholar]
  32. Stanier R. Y., Ingraham J. L. 1954; Protocatechuic acid oxidase. Journal of Biological Chemistry 210:799–808
    [Google Scholar]
  33. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  34. Tiwari N. P., Campbell J. J. R. 1969; Utilization of dicarboxylic acids by Pseudomonas aeruginosa . Canadian Journal of Microbiology 15:1096–1100
    [Google Scholar]
  35. Weichselbaum T. E. 1946; Determination of proteins in blood serum and plasma. American Journal of Clinical Pathology (Supplement) 10:40–49
    [Google Scholar]
  36. Wheelis M. L., Palleroni N. J., Stanier R. Y. 1967; The metabolism of aromatic acids by Pseudomonas testosteroni and Pseudomonas acidovorans . Archiv für Mikrobiologie 59:302–314
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-73-3-455
Loading
/content/journal/micro/10.1099/00221287-73-3-455
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error