1887

Abstract

SUMMARY: Arginine biosynthesis in proceeded via transacetylation of acetylornithine with glutamate; it resembled rather than Of four arginine biosynthetic enzymes, -acetyl--glutamokinase, -acetylornithine glutamate transacetylase, ornithine transcarbamylase and argininosuccinase determined under various conditions of arginine excess and deprivation, only ornithine transcarbamylase (OTCase) varied. It appeared to be fully derepressed in the wild-type strain grown in minimal medium and partially repressed in the presence of arginine. OTCase was also partially repressed in all arginine auxotrophs, even when deprived of arginine. OTCase was derepressed in bradytrophic revertants of arginine auxotrophs grown in minimal medium, but its level was never greater than that in the wild-type. The level of endogenous arginine in the wild-type strain grown in minimal medium is probably insufficient to effect repression. Exogenous arginine is more effective in repression when present as the sole carbon source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-73-3-427
1972-12-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/3/mic-73-3-427.html?itemId=/content/journal/micro/10.1099/00221287-73-3-427&mimeType=html&fmt=ahah

References

  1. Albrecht A. M., Vogel H. J. 1964; Acetylornithine δ-transaminase. Partial purification and repression behaviour. Journal of Biological Chemistry 239:1872–1876
    [Google Scholar]
  2. Archibald R. M. 1944; Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. Journal of Biological Chemistry 156:121–142
    [Google Scholar]
  3. Baich A., Vogel H. J. 1962; N-Acetyl-γ-glutamokinase and N-acetyl-γ-semialdehyde dehydrogenase: Repressible enzymes of arginine synthesis in Escherichia coli . Biochemical and Biophysical Research Communications 7:491–496
    [Google Scholar]
  4. Baumberg S., Bacon D. F., Vogel H. J. 1965; Individually repressible enzymes specified by clustered genes of arginine synthesis. Proceedings of the National Academy of Sciences of the United States of America 53:1029–1032
    [Google Scholar]
  5. Calhoun D. H., Jensen R. A. 1972; The significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa . Journal of Bacteriology (in the Press)
    [Google Scholar]
  6. Crawford I. P., Gunsalus I. C. 1966; Inducibility of tryptophan synthetase in Pseudomonas putida . Proceedings of the National Academy of Sciences of the United States of America 56:717–724
    [Google Scholar]
  7. Fargie B., Holloway B. W. 1965; Absence of clustering of functionally related genes in Pseudomonas aeruginosa . Genetical Research 6:284–299
    [Google Scholar]
  8. Feary T. W., Williams B., Calhoun D. H., Walker T. A. 1969; An analysis of arginine requiring mutants in Pseudomonas aeruginosa . Genetics 62:673–686
    [Google Scholar]
  9. Gorini L., Gunderson W. 1961; Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli . b. Proceedings of the National Academy of Sciences of the United States of America 47:961–971
    [Google Scholar]
  10. Hamilton W. A., Dawes E. A. 1959; A diauxic effect with Pseudomonas aeruginosa . Biochemical Journal 71:25 p
    [Google Scholar]
  11. Holloway B. W. 1969; Genetics of Pseudomonas . Bacteriological Reviews 33:419–433
    [Google Scholar]
  12. Holloway B. W., Egan J. P., Monk M. 1960; Lysogeny in Pseudomonas aeruginosa . Australian Journal of Experimental Biology and Medical Science 38:321–330
    [Google Scholar]
  13. Isaac J. H., Holloway B. W. 1968; Control of pyrimidine biosynthesis in Pseudomonas aeruginosa . Journal of Bacteriology 96:1732–1741
    [Google Scholar]
  14. Jacoby G. A., Gorini L. 1967; Genetics of the control of the arginine pathway in Escherichia coli b and k. Journal of Molecular Biology 24:41–50
    [Google Scholar]
  15. Lowry D. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  16. Maas W. K. 1961; Studies on repression of arginine synthesis in Escherichia coli . Cold Spring Harbor Symposium on Quantitative Biology 26:183–191
    [Google Scholar]
  17. Marinus M. G., Loutit J. S. 1969; Regulation of isoleucine-valine biosynthesis in Pseudomonas aeruginosa. II. Regulation of enzyme activity and synthesis. Genetics 63:557–567
    [Google Scholar]
  18. Middelhoven W. J. 1969; Enzyme repression in the arginine pathway of Saccharomyces cerevisiae . Antonie van Leeuwenhoek 35:215–226
    [Google Scholar]
  19. Novick R. P., Maas W. K. 1961; Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli . Journal of Bacteriology 81:236–240
    [Google Scholar]
  20. Pearce L. E., Loutit J. S. 1965; Biochemical and genetic grouping of isoleucine-valine mutants of Pseudomonas aeruginosa . Journal of Bacteriology 89:58–63
    [Google Scholar]
  21. Prozesky O. W. 1967; Arginine synthesis in Proteus mirabilis . Journal of General Microbiology 49:325–334
    [Google Scholar]
  22. Prozesky O. W. 1969; Regulation of the arginine pathway in Proteus mirabilis . Journal of General Microbiology 55:89–102
    [Google Scholar]
  23. Ratner S. 1955; Enzymatic synthesis of arginine (condensing and splitting enzymes). Methods in Enzymology 2:356–359
    [Google Scholar]
  24. Sercarz E. E., Gorini L. 1964; Different contribution of exogenous and endogenous arginine to repressor formation. Journal of Molecular Biology 8:254–262
    [Google Scholar]
  25. Stalon V., Ramos F., Piérard A., Wiame J. M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyl transferase in Pseudomonas . Biochimica et biophysica acta 139:91–97
    [Google Scholar]
  26. Udaka S. 1966; Pathway-specific pattern of control of arginine biosynthesis in bacteria. Journal of Bacteriology 91:617–621
    [Google Scholar]
  27. Udaka S., Kinoshita S. 1958; Studies on l-ornithine fermentation. I. The biosynthetic pathway of l-ornithine in Micrococcus glutamicus . Journal of General and Applied Microbiology 4:272–282
    [Google Scholar]
  28. Vogel H. J., Bacon D. F., Baich A. 1963; Induction of acetylornithine δ-transaminase during pathway wide repression. In Informational Macromolecules pp. 293–300 Edited by Vogel H. J., Bryson V., Lampen J. O. New York: Academic Press;
    [Google Scholar]
  29. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. Journal of Biological Chemistry 218:97–106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-73-3-427
Loading
/content/journal/micro/10.1099/00221287-73-3-427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error