1887

Abstract

SUMMARY: possesses a permease specific for L-methionine (K of 0.1 to 0.2 µM). Competition studies have shown that the permease has little or no affinity for the other L-amino acids commonly found in proteins. Methionine uptake was competitively inhibited by the growth inhibitory analogues DL-ethionine, α-methyl-DL-methionine and DL-methionine-DL-sulphoximine. Mutants resistant to α-methyl-methionine and methionine sulphoximine have been isolated which were severely defective in the methionine specific permease. Two of these mutants, and , mapped away from all previously located methionine structural and regulatory genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-73-1-127
1972-11-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/mic-73-1-127.html?itemId=/content/journal/micro/10.1099/00221287-73-1-127&mimeType=html&fmt=ahah

References

  1. Ames G. F. 1964; Uptake of amino acids by Salmonella typhimurium . Archives of Biochemistry and Biophysics 104:1–18
    [Google Scholar]
  2. Ames G. F., Lever J. 1970; Components of histidine transport: histidine-binding proteins and hisP protein. Proceedings of the National Academy of Sciences of the United States of America 66:1096–1103
    [Google Scholar]
  3. Ames G. F., Roth J. R. 1968; Histidine and aromatic permeases of Salmonella typhimurium . Journal of Bacteriology 96:1742–1749
    [Google Scholar]
  4. Ayling P. D., Bridgeland E. S. 1970; Methionine transport systems in Salmonella typhimurium . Heredity 25:687–688
    [Google Scholar]
  5. Ayling P. D., Chater K. F. 1968; The sequence of four structural and two regulatory methionine genes in the Salmonella typhimurium linkage map. Genetical Research 12:341–354
    [Google Scholar]
  6. Chater K. F. 1969 Linkage and dominance studies of genes controlling methionine synthesis in Salmonella typhimurium. Ph.D. Thesis: University of Birmingham;
    [Google Scholar]
  7. Chater K. F. 1970; Dominance of the wild-type alleles of methionine regulatory genes in Salmonella typhimurium . Journal of General Microbiology 63:95–109
    [Google Scholar]
  8. Chater K. F., Rowbury R. J. 1970; A genetical study of the feedback-sensitive enzyme of methionine synthesis in Salmonella typhimurium . Journal of General Microbiology 63:111–120
    [Google Scholar]
  9. Cohen G. N., Monod J. 1957; Bacterial permeases. Bacteriological Reviews 21:169–194
    [Google Scholar]
  10. Dixon M. 1953; The determination of enzyme inhibitor constants. Biochemical Journal 55:170–171
    [Google Scholar]
  11. Greenstein J. P., Winitz M. 1961 Chemistry of the Amino Acids p 1390 New York: John Wiley;
    [Google Scholar]
  12. Hansen D. L., Bush E. T. 1967; Improved solubilization procedures for liquid scintillation counting of biological materials. Analytical Biochemistry 18:320–332
    [Google Scholar]
  13. Kessel D., Lubin M. 1965; Stability of the α-hydrogen of amino acids during active transport. Biochemistry 4:561–565
    [Google Scholar]
  14. Krajewska-Grynkiewicz K., Walczak W., Klopotowski T. 1971; Mutants of Salmonella typhi-murium able to utilize d-histidine as a source of l-histidine. Journal of Bacteriology 105:28–37
    [Google Scholar]
  15. Lawrence D. A. 1967 Methionine analogue resistant mutants of Salmonella typhimurium. Ph.D. Thesis: University of Birmingham;
    [Google Scholar]
  16. Lawrence D. A., Smith D. A., Rowbury R. J. 1968; Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58:473–492
    [Google Scholar]
  17. Lineweaver H., Burk D. 1934; The determination of enzyme dissociation constants. Journal of the American Chemical Society 56:658–661
    [Google Scholar]
  18. Piperno J. R., Oxender D. L. 1968; Amino acid transport systems in Escherichia coli k12. Journal of Biological Chemistry 243:5914–5920
    [Google Scholar]
  19. Roberts R. B., Cowie D. B., Abelson P. H., Bolton E. T., Britten R. J. 1955 Studies of BioSynthesis in Escherichia coli p 5 Carnegie Institution Publication; Washington, D.C. Carnegie Institution:
    [Google Scholar]
  20. Rosen B. P., Vasington F. D. 1971; Purification and characterization of a histidine-binding protein from Salmonella typhimurium lt2 and its relationship to the histidine permease system. Journal of Biological Chemistry 246:5351–5360
    [Google Scholar]
  21. Sanderson K. E. 1970; Current linkage map of Salmonella typhimurium . Bacteriological Reviews 34:176–193
    [Google Scholar]
  22. Shifrin S., Ames B. N., Ames G. F. 1966; Effect of the α-hydrazino analogue of histidine on histidine transport and arginine biosynthesis. Journal of Biological Chemistry 241:3424–3429
    [Google Scholar]
  23. Smith D. A. 1961; Some aspects of the genetics of methionineless mutants of Salmonella typhimurium . Journal of General Microbiology 24:335–353
    [Google Scholar]
  24. Smith D. A., Childs J. D. 1966; Methionine genes and enzymes of Salmonella typhimurium . Heredity 21:265–286
    [Google Scholar]
  25. Smith H. O., Levine M. 1967; A phage P22 gene controlling integration of prophage. Virology 31:207–216
    [Google Scholar]
  26. Weisbrod R., Meister M. 1967; Unpublished data quoted in Meister A. (19678). On the synthesis and utilization of glutamine. Harvey Lectures 63:139–178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-73-1-127
Loading
/content/journal/micro/10.1099/00221287-73-1-127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error