Non-smooth Mutants of : Differentiation by Phage Sensitivity and Genetic Mapping Free

Abstract

SUMMARY: Non-smooth mutants of strain 2 with known lipo-polysaccharide (LPS) defects were tested for sensitivity to smooth-specific phages (P22 and P22h and a newly isolated phage, 9NA, active on P22 lysogens); Felix O phage; and several rough-specific phages including C21. Smooth strains were sensitive only to the smooth-specific and Felix O phages. Six mutants (unable to make O chains) were sensitive to Felix O and all the rough-specific phages except C21 (pattern R-sens). Of nine mutants (presumed to have LPS core defects) four were R-sens, six were resistant to Felix O and some rough-specific phages (pattern R-res-1), and one was also resistant to phage Br2 (pattern R-res-2). The phage sensitivity of phosphomannoisomerase () mutants was the same as that of mutants, except that they were partly sensitive to P22h. UDPgalactose-epimerase-negative mutants were sensitive to C21 and various rough-specific phages including Br2 (pattern Epi-1). An mutant (unable to polymerize O repeat units) was sensitive only to Felix O and P221 (pattern Zsr). A part-rough mutant of class D (with abnormally few O chains) was incompletely resistant to smooth-specific phages, resistant to Felix O but sensitive to all rough-specific phages except C21 (pattern D-1).

Spontaneous and mutagen-induced non-smooth mutants were isolated from 2 strains with appropriate markers by selection with Felix O and/or P22 phage.(One parent strain used was non-lysogenic for Fels 2, for which 2 wild-type is lysogenic. Lysogeny for Fels 2 did not affect sensitivity to the other phages.) Some mutants gave new sensitivity patterns. Mutants of these and of previously unmapped classes were crossed with smooth Hfr strains. The loci of two mutants and loci of two others were located in the segment. Three mutants of pattern R-sens yielded O-specific hapten but mapped near they are believed to be unable to transfer O chains from antigen carrier lipid to the LPS core as a result of mutation at Six mutants of pattern R-sens were smooth in cultural and serological properties; they mapped near and are probably leaky mutants. Many mutants had the class D part-rough phenotype, divisible by phage sensitivities into patterns D-1, D-2 and D-3. Mutants of all three classes mapped near ; they are likely to be mutants, perhaps leaky, with LPS core defects which hinder but do not prevent attachment of O chains. Two classes were sensitive to C21 (Wilkinson & Stocker, 1968): mutants, of pattern Epi-1, unable to add the main-chain galactose unit of the core; and mutants, resistant to Br2 (pattern Epi-2), unable to add the proximal glucose unit. Both loci mapped in or near the segment. Several non-smooth mutants did not grow in the presence of bile-salts. Three mutants () made LPS deficient of the distal hep-tose unit; one mutant () was unable to add the proximal heptose unit. Both these loci mapped in or near the segment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-70-3-527
1972-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/3/mic-70-3-527.html?itemId=/content/journal/micro/10.1099/00221287-70-3-527&mimeType=html&fmt=ahah

References

  1. Adams G. A., Quadling C., Perry M. B. 1967; d-glycero-d-manno heptose as a component of lipo-polysaccharides of Gram-negative bacteria. Canadian Journal of Microbiology 13:1605–1613
    [Google Scholar]
  2. Beckmann I., Subbaiah T. V., Stocker B. A. D. 1964; Rough mutants of Salmonella typhimurium. (2) Serological and chemical investigations. Nature; London: 2011299–1301
    [Google Scholar]
  3. Boyd J. S. K. 1950; The symbiotic bacteriophages of Salmonella typhimurium. Journal of Pathology and Bacteriology 62:501–517
    [Google Scholar]
  4. Boyd J. S. K., Bidwell D. E. 1957; The type A phages of Salmonella typhimurium: identification by a standardized cross immunity test. Journal of General Microbiology 16:217–228
    [Google Scholar]
  5. Brandis H. 1956; Untersuchungen fiber Bakteriophagen, die auf rauhe Bakterienstamme wirken. Zentral-blatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten undHygiene Abt. I, (Originale) 165:305–312
    [Google Scholar]
  6. Brandis H. 1966; Untersuchungen über die Wirkung von R-spezifischen Bakteriophagen auf R-Formen von S. paratyphi B. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abt. 1, (Originale) 199:185–192
    [Google Scholar]
  7. Brown T. F. 1970 Characterization of bacteriophage 9NA M.S. Thesis Howard University, Washington, D.C.:
    [Google Scholar]
  8. Burnet F. M. 1927; The relationships between heat stable agglutinogens and sensitivity to bacteriophage in the Salmonella group. British Journal of Experimental Pathology 8:121–129
    [Google Scholar]
  9. Burnet F. M. 1929; ‘Smooth rough’ variation in bacteria in its relation to bacteriophage. Journal of Pathology and Bacteriology 32:15–42
    [Google Scholar]
  10. Burnet F. M., McKie M. 1933; The classification of dysentery-coli bacteriophages. I. The differentiation by Bail’s methods of phages lysing a typical B. coli strain. Journal of Pathology and Bacteriology 36:299–306
    [Google Scholar]
  11. Callow B. R. 1959; A new phage-typing scheme for Salmonella typhi-murium. Journal of Hygiene 57:346–359
    [Google Scholar]
  12. Cynkin M. A., Osborn M. J. 1968; Enzymatic transfer of O-antigen to lipopolysaccharide. Federation Proceedings 27:293
    [Google Scholar]
  13. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  14. Felix A., Callow B. R. 1943; Typing of paratyphoid B bacilli by means of Vi bacteriophage. British Medical Journal ii:127–130
    [Google Scholar]
  15. Fildes P. 1954; The relation of divalent metals to lysis of typhoid bacilli by bacteriophages. British Journal of Experimental Pathology 35:122–128
    [Google Scholar]
  16. Fildes P., Kay D. 1955; The rate of adsorption of bacteriophage by rough and smooth strains of Salmonella typhi. British Journal of Experimental Pathology 36:534–537
    [Google Scholar]
  17. Fukasawa T., Nikaido H. 1960; Formation of phage receptors induced by galactose in a galactose-sensitive mutant of Salmonella. Virology 11:508–510
    [Google Scholar]
  18. Fukasawa T., Nikaido H. 1961; Galactose mutants of Salmonella typhimurium. Genetics 46:1295–1303
    [Google Scholar]
  19. Gemski P.Jun Stocker B. A. D. 1967; Transduction by bacteriophage P22 in nonsmooth mutants of Salmonella typhimurium. Journal of Bacteriology 93:1588–1597
    [Google Scholar]
  20. Ginsburg V. 1966; Isolation of uridine 5′-diphosphate l-rhamnose from Salmonella typhimurium. Journal of Biological Chemistry 241:3750–3753
    [Google Scholar]
  21. Hämmerling G. 1968 Klassifizerung einiger Mutanten von Enterobacteriaceen Diplomarbeit University of Freiburg, Germany:
    [Google Scholar]
  22. Hellerqvist C. G., Lindberg A. A. 1971; Structural studies on the common core polysaccharide from Salmonella typhimurium. Carbohydrate Research 16:39–48
    [Google Scholar]
  23. Joys T. M., Stocker B. A. D. 1965; Complementation of non-flagellate Salmonella mutants. Journal of General Microbiology 41:47–55
    [Google Scholar]
  24. Kallings L. O. 1967; Sensitivity of various Salmonella strains to Felix 0–1 phage. Acta pathologica et microbiologica scandinavica 70:446
    [Google Scholar]
  25. Kay D. 1955; The reactions of certain bacteriophages with their receptors isolated from Salmonella typhi0901R. British Journal of Experimental Pathology 36:290–297
    [Google Scholar]
  26. Kay D. 1956; The effect of divalent metals on the stability of a typhoid bacteriophage and its reaction with its receptor. British Journal of Experimental Pathology 37:560–565
    [Google Scholar]
  27. Kay D. 1962; The nucleic acid composition of bacteriophage 𝜙R. Journal of General Microbiology 27:201–207
    [Google Scholar]
  28. Kuo T., Stocker B. A. D. 1968; Transduction of rta (= rouA) genes of Salmonella typhimurium strain LT2 by phage ES18. Bacteriological Proceedings p 56
    [Google Scholar]
  29. Kuo T., Stocker B. A. D. 1970; ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. Virology 42:621–632
    [Google Scholar]
  30. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Methods in Medical Research 3:5–22
    [Google Scholar]
  31. Lindberg A. A. 1967; Studies of a receptor for Felix O-1 phage in Salmonella minnesota. Journal of General Microbiology 48:225–233
    [Google Scholar]
  32. Lindberg A. A., Hellerqvist C. G. 1971; Bacteriophage attachment sites, serological specificity and chemical composition of the lipopolysaccharides of semirough and rough mutants of Salmonella typhimurium. Journal of Bacteriology 105:57–64
    [Google Scholar]
  33. Lindberg A. A., Holme T. 1968; Immunochemical studies on cell-wall polysaccharide of rough mutants of Salmonella typhimurium. Journal of General Microbiology 52:55–65
    [Google Scholar]
  34. Lindberg A. A., Holme T. 1969; Influence of O side chains on the attachment of the Felix O-1 bacteriophage to Salmonella bacteria. Journal of Bacteriology 99:513–519
    [Google Scholar]
  35. Lindberg A. A., Sarvas M., Mäkeltä P. H. 1970; Bacteriophage attachment to the somatic antigen of Salmonella: effect ofO-specific structures in leaky R mutants and S, Tl hybrids. Infection and Immunity 1:88–97
    [Google Scholar]
  36. Loveless A., Howarth S. 1959; Mutation of bacteria at high levels of survival by ethyl methane sulphonate. Nature; London: 1841780–1782
    [Google Scholar]
  37. Lüderitz A, Galanos C., Risse H. J., Ruschmann E., schlecht S., schmidt G., schulteholthausen H., Wheat R., Westphal O., schlosshardt J. 1966; Structural relationships of Salmonella O and R antigens. Annals of the New York Academy of sciences 133:349–374
    [Google Scholar]
  38. Lüderitz O., Jann K., Wheat R. 1968; Somatic and capsular antigens of Gram-negative bacteria. In Comprehensive Biochemistry 26A pp 105–228 Florkin M., Stotz E. H. Edited by New York: Elsevier Publishing Co;
    [Google Scholar]
  39. Mäkeltä P. H. 1966; Genetic determination of the O-antigens of Salmonella groups B (4, 5, 12) and C (6, 7). Journal of Bacteriology 91:1115–1125
    [Google Scholar]
  40. Mäkeltä P. H., Stocker B. A. D. 1969; Genetics of polysaccharide biosynthesis. Annual Review of Genetics 3:291–322
    [Google Scholar]
  41. Markovitz A., Sydiskis R. J., Lieberman M. M. 1967; Genetic and biochemical studies on mannosenegative mutants that are deficient in phosphomannose isomerase in Escherichia coli k-12. Journal of Bacteriology 94:1492–1496
    [Google Scholar]
  42. Naide Y., Nikaido H., Mäkeltä P. H., Wilkinson R. G., Stocker B. A. D. 1965; Semirough strains of Salmonella. Proceedings of the National Academy of sciences of the United States of America 53:147–153
    [Google Scholar]
  43. Nikaido H., Naide Y., Mäkelä P. H. 1966; Biosynthesis of O-antigenic polysaccharides in Salmonella. Annals of the New York Academy of sciences 133:299–314
    [Google Scholar]
  44. Nikaido H., Nikaido K., Subbaiah T. V., Stocker B. A. D. 1964; Rough mutants of Salmonella typhimurium. (3) Enzymatic synthesis of nucleotide-sugar compounds. Nature; London: 2011301–1302
    [Google Scholar]
  45. Osborn M. J. 1968; Biochemical characterization of mutants of Salmonella typhimurium lacking glucosyl and galactosyl lipopolysaccharide transferases. Nature; London: 217957–960
    [Google Scholar]
  46. Risse H. J., Droge W., Ruschmann E., Lüderitz O., Westphal O., Schlosshardt J. 1967; Eine neue Gruppe von Salmonella R-Mutanten: Serologische und biochemische Analyse des Heptosekerns von Lipopolysacchariden aus Salmonella minnesota- und Salmonella rw/rw-Mutanten. European Journal of Biochemistry 1:216–232
    [Google Scholar]
  47. Rosen S. M., Zeleznick L. D., Fraenkel D., Wiener I. M., Osborn M. J., Horecker B. L. 1965; Characterization of the cell wall lipopolysaccharide of a mutant of Salmonella typhimurium lacking phosphomannose isomerase. Biochemische Zeitschrift 342:375–386
    [Google Scholar]
  48. Sanderson K. E. 1970; Current linkage map of Salmonella typhimurium. Bacteriological Reviews 34:176–193
    [Google Scholar]
  49. Sanderson K. E., Hall C. A. 1970; F-prime factors of S. typhimurium and an inversion between S. typhimurium and E. coli. Genetics 64:215–228
    [Google Scholar]
  50. Sanderson K. E., Saeed Y. A. 1968; Genetics of cell wall mutants of Salmonella typhimurium. Bacteriological Proceedings 55:80
    [Google Scholar]
  51. Scher B. M., Ginsburg V. 1968; Isolation of adenosine 5′-diphosphate d-mannitol from Salmonella typhimurium. Journal of Biological Chemistry 243:2385–2389
    [Google Scholar]
  52. Schmidt G., Lüderitz O. 1969; Untersuchungen zur Typisierung von Salmonella-R-Formen. 2. Typisierung von S. minnesota-Mutanten durch Phagen. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abt. I, (Originale) 210:381–387
    [Google Scholar]
  53. Sertic V., Boulgakov N. 1935; Classification et identification des typhi-phages. Comptes rendu des seances de la Societe de biologie 119:1270–1272
    [Google Scholar]
  54. Shedlovsky A., Brenner S. 1963; A chemical basis for the host induced modification of T-even bacteriophages. Proceedings of the National Academy of sciences of the United States of America 50:300–305
    [Google Scholar]
  55. Sinsheimer R. L. 1959; A single-stranded deoxyribonucleic acid from bacteriophage 𝜙X174. Journal of Molecular Biology 1:43–53
    [Google Scholar]
  56. Smith S. M., Stocker B. A.D. 1962; Colicinogeny and recombination. British Medical Bulletin 18:46–51
    [Google Scholar]
  57. Spicer C. C., Datta N. 1959; Reversion of transduced antigenic characters in Salmonella typhimurium. Journal of General Microbiology 20:136–143
    [Google Scholar]
  58. Stocker B. A. D. 1969; Genetic determination of the structure of the core of Salmonella somatic polysaccharide. Colloques Internationaux du centre National de la Recherche scientifique 174:189–199
    [Google Scholar]
  59. Subbaiah T. V., Stocker B. A. D. 1964; Rough mutants of Salmonella typhimurium. (1) Genetics. Nature; London: 2011298–1299
    [Google Scholar]
  60. Taylor A. L. 1970; Current linkage map of Escherichia coli. Bacteriological Reviews 34:155–175
    [Google Scholar]
  61. Tessman I. 1959; Some unusual properties of the nucleic acid in bacteriophages S13 and 𝜙X174. Virology 7:263–275
    [Google Scholar]
  62. Tessman E. S., Shleser R. 1963; Genetic recombination between phages S13 and 𝜙X174. Virology 19:239–240
    [Google Scholar]
  63. Tucker R. G. 1961; The role of magnesium ions in the growth of Salmonella phage anti-R. Journal of General Microbiology 26:313–323
    [Google Scholar]
  64. Wilkinson R. G., Stocker B. A. D. 1968; Genetics and cultural properties of mutants of Salmonella typhimurium lacking glucosyl and galactosyl lipopolysaccharide transferases. Nature; London: 217955–957
    [Google Scholar]
  65. Yamamoto N. 1967; The origin of bacteriophage P221. Virology 33:545–547
    [Google Scholar]
  66. Yamamoto N., Anderson T. F. 1961; Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology 14:430–439
    [Google Scholar]
  67. Yamamoto N., Weir M. L. 1966; Boundary structure between homologous and non-homologous regions in serologically unrelated bacteriophages P22 and P221.1. Mapping by recombination found in cultures of double lysogenic strains for P22h and P221. Virology 28:325–330
    [Google Scholar]
  68. Yuasa R., Nakane K., Nikaido H. 1970; Structure of lipopolysacharide from a semirough mutant. European Journal of Biochemistry 15:63–71
    [Google Scholar]
  69. Zahler S. A. 1958; Some biological properties of bacteriophages S13 and 𝜙X-174. Journal of Bacteriology 75:310–315
    [Google Scholar]
  70. Zinder N. D. 1953; Infective heredity in bacteria. Cold Spring Harbor Symposia on Quantitative Biology 18:261–269
    [Google Scholar]
  71. Zinder N. D. 1958; Lysogenisation and superinfection immunity in Salmonella. Virology 5:291–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-70-3-527
Loading
/content/journal/micro/10.1099/00221287-70-3-527
Loading

Data & Media loading...

Most cited Most Cited RSS feed