1887

Abstract

SUMMARY: Mutants of were isolated which grew with acetanilide (-phenylacetamide) as the sole carbon source for growth. The mutants could also use acetanilide as a nitrogen source but grew better in the presence of ammonium salts. The acetanilide-utilizing mutants produced amidases which differed in substrate specificity and electrophoretic mobility from the wild-type A amidase and the B amidase produced by a butyramide-utilizing mutant. The amidase from one of the acetanilide-utilizing mutants was purified and shown to differ from the wild-type enzyme by the substitution of an isoleucine for a threonine residue.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-70-2-287
1972-04-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/2/mic-70-2-287.html?itemId=/content/journal/micro/10.1099/00221287-70-2-287&mimeType=html&fmt=ahah

References

  1. Brammar W.J., Clarke P.H. 1964; Induction and repression of >Pseudomonas aeruginosa amidase. Journal of General Microbiology 37:307–319
    [Google Scholar]
  2. Brammar W.J., Clarke P.H., Skinner A.J. 1967; Biochemical and genetic studies with regulator mutants of the Pseudomonas Aeruginosa 8602 amidase system. Journal of General Microbiology 47:87–102
    [Google Scholar]
  3. Brown J.E., Brown P.R., Clarke P.H. 1969; Butyramide-utilizing mutants of Pseudomonas Aeruginosa 8602 which produce an amidase with altered substrate specificity. Journal of General Microbiology 57:273–295
    [Google Scholar]
  4. Brown J.E., Clarke P.H. 1970; Mutations in a regulator gene allowing Pseudomonas Aeruginosa8602 to grow on butyramide. Journal of General Microbiology 64:329–342
    [Google Scholar]
  5. Brown P.R. 1969 Studies on Wild-type and Mutant Amidase Proteins from Pseudomonas aeruginosa Ph.Dthesis University of London:
    [Google Scholar]
  6. Demerec M., Adelburg E.A., Clark A.J., Hartman P.E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  7. Gray W.R. 1967a; Sequential degradation plus dansylation. Methods in Enzymology 11:469–475
    [Google Scholar]
  8. Gray W.R. 1967a; Dansyl choride procedure. Methods in Enzymology 11:139–151
    [Google Scholar]
  9. Hirs C.H.W. 1956; The oxidation of ribonuclease with performic acid. Journal of Biological Chemistry 319:611–621
    [Google Scholar]
  10. Holloway B.W. 1969; Genetics of Pseudomonas . Bacterial Reviews 33:419–443
    [Google Scholar]
  11. Kelly M., Clarke P.H. 1962; An inducible amidase produced by a strain of Pseudomonas Aeruginosa . Journal of General Microbiology 27:305–316
    [Google Scholar]
  12. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  13. McFarlane N.D.D. 1967 Studies on Pseudomonas Aeruginosa Amidase Ph.D Thesis University of London:
    [Google Scholar]
  14. McFarlane N.D.D., Brammar W.J., Clarke P.H. 1965; Esterase activity of Pseudomonas Aeruginosaamidase. Biochemical Journal 95:24C–25C
    [Google Scholar]
  15. Michl H. 1951; Über Papierelektrophorese bei Spannungsgefallen von 50 V/cm. Monatshefte für Chemie 82:489–493
    [Google Scholar]
  16. Milstein C. 1966; The disulphide bridges of immunoglobulin k -chains. Biochemical Journal 101:338–351
    [Google Scholar]
  17. Woods K.R., Wang K.-T. 1967; Separation of dansyl amino acids by polyamide layer chromatography. Biochimica et Biophysica Acta 133:369–370
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-70-2-287
Loading
/content/journal/micro/10.1099/00221287-70-2-287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error