Mechanism of the Growth Inhibitory Effect of Cysteine on Free

Abstract

SUMMARY

Cysteine appeared to have two classes of growth inhibitory effect on :

(1)Above 0·2 m it inhibited growth on minimal medium by a mechanism which may involve interference with leucine, isoleucine, threonine and valine biosynthesis;

(2)above 2 m, in media with these amino acids, it had an effect which may involve interaction with membrane bound respiratory enzymes.

Cysteamine showed only effect (2).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-68-3-349
1971-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/3/mic-68-3-349.html?itemId=/content/journal/micro/10.1099/00221287-68-3-349&mimeType=html&fmt=ahah

References

  1. Alföldi L., Raskó I., Kerekes E. 1968; l-Serine deaminase of Escherichia coli. Journal of Bacteriology 96:1512–1518
    [Google Scholar]
  2. Bernheim F. 1966; Cysteamine inhibition of enzyme induction and acetate oxidation in Pseudomonas aeruginosa and its reversal by high salt concentration. Experientia 22:801–803
    [Google Scholar]
  3. Bhuvanesvaran C., Sreenivasan A. 1964; Effect of cysteine on respiration and catalase synthesis by Saccharomyces cerevisiae. Biochemical Journal 92:504–508
    [Google Scholar]
  4. Dalgarno L., Gros F. 1968; Completion of ribosomal particles in E. coli during inhibition of protein synthesis. Biochimica et biophysica acta 157:52–63
    [Google Scholar]
  5. Datta P. 1967; Regulation of homoserine biosynthesis by l-cysteine, a terminal metabolite of a linked pathway. Proceedings of the National Academy of Sciences of the United States of America 58:635–641
    [Google Scholar]
  6. Datta P. 1969; Regulation of branched biosynthetic pathways in bacteria. Science; New York: 165556–562
    [Google Scholar]
  7. Ellman G. L. 1959; Tissue sulphydryl groups. Archives of Biochemistry 82:70–77
    [Google Scholar]
  8. Ginsberg D. M. 1966; Effects of β-mercaptoethylamine on growth and radiation sensitivity of Escherichia coli strain taubar. Radiation Research 28:708–716
    [Google Scholar]
  9. Jones-Mortimer M. C. 1968; Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli K 12. Biochemical Journal no:597–602
    [Google Scholar]
  10. Kari C., Nagy Z., Hernádi F. 1971; Effect of cysteine on inducible synthesis of β-galactosidase in Escherichia coli. Biochemical Pharmacology 20:975–978
    [Google Scholar]
  11. Komlós E., Erdős T. 1959; Enzyme inhibitors. In Methods in Experimental Medicine in Hungarian v pp. 181–227 Kovách A. Edited by Budapest: Akadémiai Kiado;
    [Google Scholar]
  12. Koningsberger V. V. 1967; The regulation of inducible α-glucosidase synthesis in yeast. In Regulation of Nucleic Acid and Protein Biosynthesis 10 pp. 310–329 Koningsberger V. V., Bosch L. Edited by Biochimica et biophysica acta Library, Amsterdam: Elsevier;
    [Google Scholar]
  13. Kovács P., Kari C., Nagy ZS., Hernádi F. 1968; Possible explanation for the metabolic radioprotective effect of cysteine on Escherichia coli b. Radiation Research 36:217–224
    [Google Scholar]
  14. Leavitt R. I., Umbarger H. E. 1961; Isoleucine and valine metabolism in Escherichia coli. X. The enzymatic formation of acetohydroxybutyrate. Journal of Biological Chemistry 236:2486–2491
    [Google Scholar]
  15. Nagy Z., Hernádi F., Kovács P., Vályi-Nagy T. 1968a; Correlation between the physiological state of bacteria and the radioprotective effectiveness of cysteine. Archiv für Mikrobiologie 61:327–334
    [Google Scholar]
  16. Nagy Z., Hernádi F., Kovács P., Vályi-Nagy T. 1968b; Radiosensitivity of Escherichia coli island metabolic effect of cysteine. Radiation Research 35:652–660
    [Google Scholar]
  17. Nagy Z., Kari C., Hernádi F. 1969; Growth of Escherichia coli cells in the presence of cysteine on sulphate-deficient media. Archiv für Mikrobiologie 65:391–400
    [Google Scholar]
  18. Nagy Z., Kovács P., Balázs C., Hernádi F. 1968; Preirradiation acid-soluble sulfhydryl level-changes of the cultures of Escherichia coli 15 T in the presence of cysteine. Biochemical Pharmacology 17:861–866
    [Google Scholar]
  19. Nagy Z., Kovács P., Kari C., Hernádi F. 1970; New data on the toxic and radioprotective effect of cysteine on Escherichia coli 15T cells. Archiv für Mikrobiologie 70:65–71
    [Google Scholar]
  20. Nagy Z., Quintiliani M. 1970; X-ray sensitivity of E. coli B cells as affected by cysteine. In Radiation Protection and Sensitization pp. 171–176 Moroson H. L., Quintiliani M. Edited by London: Taylor & Francis;
    [Google Scholar]
  21. Pasternak C. A. 1962; Sulphate activation and its control in Escherichia coli and Bacillus subtilis. Biochemical Journal 85:44–49
    [Google Scholar]
  22. Reynolds P. E. 1968; The bacterial cells: major structures. In Biochemistry of Bacterial Cell Growth pp. 73–I35 Mandelstam J., McQuillen K. Edited by Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  23. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1957 Studies of Biosynthesis in Escherichia coli Washington: Carnegie Institution of Washington Publications no;607
    [Google Scholar]
  24. Umbarger H. E., Davis B. D. 1962; Pathways of amino acid biosynthesis. In The Bacteria 111 pp. 167–251 Gunsalus I. C., Stanier R. Y. Edited by New York: Academic Press;
    [Google Scholar]
  25. Wheldrake J. F. 1967; Intracellular concentration of cysteine in Escherichia coli and its relation to repression of the sulphate-activating enzymes. Biochemical Journal 105:697–699
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-68-3-349
Loading
/content/journal/micro/10.1099/00221287-68-3-349
Loading

Data & Media loading...

Most cited Most Cited RSS feed