1887
Preview this article:
Zoom in
Zoomout

‘Don′t talk to me about permeability’: The Tenth Marjory Stephenson Memorial Lecture, Page 1 of 1

| /docserver/preview/fulltext/micro/68/1/mic-68-1-1-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-68-1-1
1971-09-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/mic-68-1-1.html?itemId=/content/journal/micro/10.1099/00221287-68-1-1&mimeType=html&fmt=ahah

References

  1. Anraku Y. 1968a; Purification and specificity of the galactose and leucine-binding proteins. Journal of Biological Chemistry 243:3116–3122
    [Google Scholar]
  2. Anraku Y. 1968b; Studies on the restoration of active transport. Journal of Biological Chemistry 243:3128–3135
    [Google Scholar]
  3. Bermingham M. A., Deol B. S., Still J. L. 1970; The occurrence of bound serine in acetone extracts of Serratia marcescens exclusively in compounds of a cyclic depsipeptide structure related to serratamolide. Biochemical Journal 116:759–761
    [Google Scholar]
  4. Blondin G. A., DeCastro A. F., Senior A. E. 1971; The isolation and properties of a peptide ionophore from beef heart mitochondria. Biochemical and Biophysical Research Communications 43:28–35
    [Google Scholar]
  5. Boos W. 1969; The galactose binding protein and its relationship to the β-methylgalactosidepermease from Escherichia coli. European Journal of Biochemistry 10:66–73
    [Google Scholar]
  6. Carter J. A., Fox C. F., Kennedy E. P. 1968; Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 60:725–732
    [Google Scholar]
  7. Chapman D., Wallach D. F. H. 1968 Biological Membranes p. 125 Chapman D. Edited by New York: Academic Press;
    [Google Scholar]
  8. Cohen G. N., Monod J. 1957; Bacterial permeases. Bacteriological Reviews 21:169–194
    [Google Scholar]
  9. Danielli J. F., Davson H. A. 1935; A contribution to the theory of permeability of thin films. Journal of Cellular and Comparative Physiology 5:495–588
    [Google Scholar]
  10. Davies R., Folkes J. P., Gale E. F., Bigger L. C. 1953; Changes in sodium and potassium accompanying the accumulation of glutamic acid or lysine by bacteria and yeast. Biochemical Journal 54:430–437
    [Google Scholar]
  11. Dawson I. M. 1949 Symposia of the Society for General Microbiology 1:119–121
    [Google Scholar]
  12. Farrell J., Rose A. 1967; Temperature effects on micro-organisms. Annual Review of Microbiology 21:101–120
    [Google Scholar]
  13. Feere C. J., Dulaney A. D., Michelson I. D. 1939; The lactase activity OF Escherichia coli mutabile. Journal of Bacteriology 37:355–363
    [Google Scholar]
  14. Fox C. F. 1969; A lipid requirement for induction of lactose transport in Escherichia coli. Proceedings of the National Academy of the United States of America 63:850–855
    [Google Scholar]
  15. Fox C. F., Carter J. R., Kennedy E. P. 1967; Genetic control of the membrane protein component of the lactose transport system of Escherichia coli. Proceedings of the National Academy of the United States of America 57:698–705
    [Google Scholar]
  16. Fox C. F., Kennedy E. P. 1965; Specific labelling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proceedings of the National Academy of the United States of America 54:891–899
    [Google Scholar]
  17. Gale E. F. 1947; The passage of certain amino acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. Journal of General Microbiology 1:53–76
    [Google Scholar]
  18. Gale E. F. 1970; Effects of diacetylmorphine and related morphinans on some biochemical activities of Staphylococcus aureus. Journal of Molecular Pharmacology 6:128–133
    [Google Scholar]
  19. Gale E. F., Folkes J. P. 1965; The incorporation of glycerol and lysine into the lipid fraction of Staphylococcus aureus. Biochemical Journal 94:390–400
    [Google Scholar]
  20. Gale E. F., Folkes J. P. 1967; The effect of lipids on the accumulation of certain amino acids by Staphylococcus aureus. Biochimica et biophysica acta 144:461–466
    [Google Scholar]
  21. Gale E. F., Llewellin J. 1970; Release of lipids from, and their effect on aspartate transport in, osmotically shocked Staphylococcus aureus. Biochimica et biophysica acta 222:546–549
    [Google Scholar]
  22. Gale E. F., Llewellin J. 1971; Effect of unsaturated fatty acids on aspartate transport in Staphylococcus aureus and on staphylococcal lipid monolayers. Biochimica et biophysica acta 233:237–242
    [Google Scholar]
  23. Harold F. M., Baarda J. R. 1967; Gramidicin, valinomycin and cation permeability of Streptococcus faecalis. Journal of Bacteriology 94:53–60
    [Google Scholar]
  24. Harold F. M., Baarda J. R. 1968; Effects of nigericin and monactin on cation permeability of Streptococcus faecalis and metabolic capacities of potassium-depleted cells. Journal of Bacteriology 95:816–823
    [Google Scholar]
  25. Hauser H., Finer E. G., Chapman D. 1970; Nuclear magnetic resonance studies of the polypeptide alamethicin and its interaction in phospholipids. Journal of Molecular Biology 53:419–433
    [Google Scholar]
  26. Haynes D. H., Kowalsky A., Pressman B. 1969; Application of nuclear magnetic resonance to the conformational changes in valinomycin during complexation. Journal of Biological Chemistry 244:502–505
    [Google Scholar]
  27. Hladky S. B., Haydon D. A. 1970; Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature; London: 225451–453
    [Google Scholar]
  28. Ivanov I. T., Laine I. A., Abdulaev N. D., Senyavina L. N., Popov E. M., Ovchinnikov Y. A., Shemyakin M. M. 1969; The physiochemical basis of the functioning of biological membranes: The conformation of valinomycin and its potassium complex in solution. Biochemical and Biophysical Research Communications 34:803–811
    [Google Scholar]
  29. Kates M., Baxter R. M. 1962; Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Canadian Journal of Biochemistry and Physiology 40:1213–1227
    [Google Scholar]
  30. Keller-Scherlein W., Simon W. 1969; Mechanisms of alkali cation transport on bulk membranes using macrotetralide antibiotics. Biochemical and Biophysical Research Communications 36:387–393
    [Google Scholar]
  31. Laico M. T., Ruoslahti E. I., Papermaster D. S., Dreyer W. J. 1970; Isolation of the fundamental polypeptide subunits of biological membranes. Proceedings of the National Academy of Sciences of the United States of America 67:120–127
    [Google Scholar]
  32. Macfarlane M. G. 1962; Characterization of lipoamino acids as O-aminoacid esters of phosphatidyl- glycerol. Nature; London: 196136–138
    [Google Scholar]
  33. Marr A. G., Ingraham J. L. 1962; Effect of temperatures on the composition of fatty acids in Escherichia coli. Journal of Bacteriology 84:1260–1267
    [Google Scholar]
  34. Medveczky N., Rosenberg H. 1970; The phosphate-binding protein of Escherichia coli. Biochimica et biophysica acta 211:158–168
    [Google Scholar]
  35. Mitchell P. D. 1970; Membranes of cells and organelles: morphology, transport, and metabolism. Symposia of the Society for General Microbiology 20:121–166
    [Google Scholar]
  36. Mitchell P. D., Moyle J. M. 1956; Osmotic function and structure in bacteria. Symposia of the Society for General Microbiology 6:150–180
    [Google Scholar]
  37. Moore C., Pressman B. C. 1964; Mechanism of action of valinomycin in mitochondria. Biochemical and Biophysical Research Communications 15:562–567
    [Google Scholar]
  38. Mueller P., Rudin D. O. 1968; Action potentials induced in bimolecular lipid membranes. Nature; London: 217713–719
    [Google Scholar]
  39. Najjar V. A., Gale E. F. 1950; The passage of lysine across the cell wall of Streptococcus faecalis. Biochemical Journal 46:91–95
    [Google Scholar]
  40. Nakane P. N., Nichoalds G. E., Oxender D. L. 1968; Cellular localization of leucine-binding protein from Escherichia coli. Science; New York: 161182–183
    [Google Scholar]
  41. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. Journal of Biological Chemistry 240:3685–3692
    [Google Scholar]
  42. Nossal N. G., Heppel L. A. 1966; The release of enzymes by osmotic shock from Escherichia coli in exponential phase. Journal of Biological Chemistry 241:3055–3062
    [Google Scholar]
  43. Ohnishi M., Urry D. W. 1970; Solution conformation of valinomycin-potassium ion complex. Science; New York: 1681091–1092
    [Google Scholar]
  44. Pardee A. B. 1966; A binding-site for sulphate and its relation to sulphate transport into Salmonella typhimurium. Journal of Biological Chemistry 241:3962–3969
    [Google Scholar]
  45. Pardee A. B. 1968; Crystallization of a sulphate-binding protein (permease) from Salmonella typhimurium. Science; New York: 1561627–1629
    [Google Scholar]
  46. Payne J. W., Jakes R., Hartley B. S. 1970; The primary structure of alamethicin. Biochemical Journal 117:757–766
    [Google Scholar]
  47. Pinkerton M., Steinrauf L. K. 1970; Molecular structure of monovalent metal cation complexes of monensin. Journal of Molecular Biology 49:533–546
    [Google Scholar]
  48. Pinkerton M., Steinrauf L. K., Dawkins P. 1969; The molecular structure and some transport properties of valinomycin. Biochemical and Biophysical Research Communications 35:512–518
    [Google Scholar]
  49. Pressman B. C. 1965; Induced active transport of ions in mitochondria. Proceedings of the National Academy of Sciences of the United States of America 53:1076–1083
    [Google Scholar]
  50. Pressman B. C., Harris E. J., Jagger W. S., Johnson J. M. 1967; Antibiotic-mediated transport of alkali ions across lipid barriers. Proceedings of the National Academy of Sciences of the United States of America 58:1949–1956
    [Google Scholar]
  51. Russell N. 1971; Alteration in fatty acid chain length in Micrococcus cryophilus grown at different temperatures. Biochimica et biophysica acta 231:254–256
    [Google Scholar]
  52. Salton M. R. J. 1952; Cell wall of Micrococcus lysodeikticus as the substrate of lysozyme. Nature; London: 170746–747
    [Google Scholar]
  53. Shemyakin M. M., Ovchinnikov Y. A., Ivanov V. T., Antonov V. K., Vinogradova E. I., Shkrob A. M., Malenkov G. G., Evstratov A. V., Laine I. A., Melnikei E. I., Ryabova I. D. 1969; Cyclodepsipeptides as chemical tools for studying ionic transport through membranes. Journal of Membrane Biology 1:402–430
    [Google Scholar]
  54. Stoeckenius W., Engelman D. M. 1969; Current models for the structure of biological membranes. Journal of Cell Biology 42:613–646
    [Google Scholar]
  55. Stephenson M. 1930 Bacterial Metabolism London: Longman;
    [Google Scholar]
  56. Stephenson M., Whetham M. D. 1922; Studies in the fat metabolism of the Timothy Grass Bacillus. Proceedings of the Royal Society B93:262–280
    [Google Scholar]
  57. Taylor E. S. 1947; Concentration of free amino acids in the internal environment of various bacteria and yeasts. Journal of General Microbiology 1:86–90
    [Google Scholar]
  58. Tomcsik J., Guex-Holzer S. 1952; Änderung der Struktur der BakterienzelleimVerlauf der Lysozym-Einwirkung. Schweizerische Zeitschrift fur AllgemeinePathologie und Bakteriologie 15:517–523
    [Google Scholar]
  59. Weibull C. 1953; The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. Journal of Bacteriology 66:688–695
    [Google Scholar]
  60. Wilson O. H., Holden J. T. 1969; Stimulation of arginine transport in osmotically shocked Escherichia coli w cells by purified arginine-binding protein fractions. Journal of Biological Chemistry 244:2743–2749
    [Google Scholar]
  61. Wilson G., Fox C. F. 1971; Biogenesis of microbial transport systems: Evidence for coupled incorporation of newly synthesized lipids and proteins into membrane. Journal of Molecular Biology 55:49–60
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-68-1-1
Loading
/content/journal/micro/10.1099/00221287-68-1-1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error