1887

Abstract

SUMMARY: Lysine auxotrophs have been isolated from 8602. Three of the mutants were deficient in diaminopimelate decarboxylase and accumulated and -diaminopimelic acid (DAP) but otherwise were indistinguishable from the parent strain. The fourth mutant required lysine for optimal growth, grew slowly on - but not -DAP, and the DAP which accumulated in large amounts was solely the -isomer. This mutant was deficient in diaminopimelate epimerase. No significant differences were detected between its wall composition and that of the parent strain but it was particularly sensitive to carbenicillin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-66-2-161
1971-05-01
2021-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/66/2/mic-66-2-161.html?itemId=/content/journal/micro/10.1099/00221287-66-2-161&mimeType=html&fmt=ahah

References

  1. Anwar R. A., Rov C., Watson R. W. 1963; Isolation and structure of uridine nucleotide-peptides from Aerobacter cloacae NRC492. Canadian Journal of Biochemistry and Physiology 41:1065–1072
    [Google Scholar]
  2. Barnes I. J., Bondi A., Moat A. G. 1969; Biochemical characterization of lysine auxotrophs of Staphylococcus aureus. Journal of Bacteriology 99:169–174
    [Google Scholar]
  3. Bodey G. P., Terrell L. M. 1968; In vitro activity of carbenicillin against Gram-negative bacilli. Journal of Bacteriology 95:1587–1590
    [Google Scholar]
  4. Brammar W. J., McFarlane N. F., Clarke P. H. 1966; The uptake of aliphatic amides by Pseudomonas aeruginosa. Society for General Microbiology 44:303–309
    [Google Scholar]
  5. Davis B. S. 1952; Biosynthetic interrelations of lysine diaminopimelic acid and threonine in mutants of. Escherichia coli Nature; London: 169534–536
    [Google Scholar]
  6. Diringer H., Jusic D. 1966; Über die Bindung der meso- Diaminopimelinsäure in Murein von E. coli. Zeitschrift fur Naturforschung 21: b 603–604
    [Google Scholar]
  7. Fensom A. H., Gray G. W. 1969; The chemical composition of the lipopolysaccharide of Pseudomonas aeruginosa. Biochemical Journal 114:185–196
    [Google Scholar]
  8. Fensom A. H., Meadow P. M. 1970; Evidence for two regions in the polysaccharide moiety of the lipopolysaccharide of Pseudomonas aeruginosa 8602. Febs Letters 9:81–84
    [Google Scholar]
  9. Ghuysen J. M., Tipper D. J., Strominger J. L. 1966; Enzymes that degrade bacterial cell walls.. In Methods in Enzymology vol 8 pp 685–699 Edited by Neufeld E. F., Ginsburg V. New York & London: Academic Press;
    [Google Scholar]
  10. Hancock I. C., Meadow P. M. 1959; The extractable lipids of Pseudomonas aeroginosa. Biochimica et biophysica acta 187:366–379
    [Google Scholar]
  11. Hoare D. S., Work E. 1955; The stereoisomers of α,ε-diaminopimelic acid: Their distribution in nature and behaviour towards certain enzyme preparations. Biochemical Journal 61:562–568
    [Google Scholar]
  12. Hoare D. S., Work E. 1957; The stereoisomers of α,ε-diaminopimelic acid. 2. Their distribution in the bacterial order Actinomycetales and in certain Eubacteriales. Biochemical Journal 65:441–447
    [Google Scholar]
  13. Kelly M., Clarke P. H. 1962; An inducible amidase produced by a strain of Pseudomonas aeruginosa. Society for General Microbiology 27:305–316
    [Google Scholar]
  14. Knox K. W., Cullen J., Work E. 1967; An extracellular lipopolysaccharide-phospholipid-protein complex produced by Escherichia coli grown under lysine-limiting conditions. Biochemical Journal 103:192–201
    [Google Scholar]
  15. Knudsen E. T., Rolinson G. N., Sutherland R. 1967; Carbenicillin: A new semisynthetic penicillin active against Pseudomonas pyocyanea. British Medical Journal iii:75–78
    [Google Scholar]
  16. Leive L., Davis B. D. 1965; The transport of diaminopimelate and cystine in Escherichia coli. Journal of Biological Chemistry 240:4362–4369
    [Google Scholar]
  17. Lilly M. D., Clarke P. H., Meadow P. M. 1963; The accumulation of nucleotides by Escherichia coli strain 26-26. Society for General Microbiology 32:103–116
    [Google Scholar]
  18. Meadow P. M., Work E. 1959; Biosynthesis of diaminopimelic acid and lysine in Escherichia coli. 1. The incorporation of 14C from various organic precursors into the diaminopimelic acid of a lysine-requiring mutant. Biochemical Journal 72:396–400
    [Google Scholar]
  19. Salton M. R. J. 1964 The Bacterial Cell Wall pp 108–109 Amsterdam, Holland: Elsevier;
    [Google Scholar]
  20. Strominger J. L., Threnn R. H. 1959; Accumulation of a uridine nucleotide in Staphylococcus aureus as the consequence of lysine deprivation. Biochimica et biophysica acta 36:83–92
    [Google Scholar]
  21. White P. J., Kelly B., Suffling A., Work E. 1964; Variation of activity of bacterial diaminopimelate decarboxylase under different conditions of growth. Biochemical Journal 91:600–610
    [Google Scholar]
  22. White P. J., Lejeune B., Work E. 1969; Assay and properties of diaminopimelate epimerase from Bacillus megaterium. Biochemical Journal 113:589–601
    [Google Scholar]
  23. Work E. 1957; Reaction of ninhydrin in add solution with straight chain amino acids containing two amino groups and its application to the estimation of a,e-diaminopimelate. Biochemical Journal 67:416–423
    [Google Scholar]
  24. Work E. 1960; The biosynthesis and fate of lysine in bacteria. Colloques Internationaux du Centre National de la Recherche Scientifique 92:143–169
    [Google Scholar]
  25. Work E. 1963; α,ε-Diaminopimelic acid.. In Methods in Enzymology vol 6 pp 624–634 Edited by Colowick S. P., Kaplan N. O. New York & London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-66-2-161
Loading
/content/journal/micro/10.1099/00221287-66-2-161
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error