1887

Abstract

SUMMARY

The respiratory activities and cytochrome contents of nitrogen-fixing continuous cultures of (8003) increased with the partial pressure of oxygen encountered during growth. Above 0·6 atm., wash-out of the culture occurred. Acetylene reduction by culture samples of low respiratory activity was far more easily inhibited by oxygenation than was that of samples of high respiratory activity, though their maximum acetylene- reducing activities at their optimal O values were similar. Inhibition by oxygen was reversible after mild oxygenation: 70 to 100 % of the original activity returned immediately when the degree of oxygenation was decreased. Irreversible inhibition occurred after vigorous oxygenation and was associated with a loss of activity in cell-free extracts, which was restored by adding the oxygen-sensitive protein component of Azotobacter nitrogenase. These observations support earlier proposals that augmented respiration can scavenge oxygen from the nitrogen-fixing site and that a conformational change in the state of nitrogenase can prevent damage to the enzyme by oxygen. Vigorous aeration, however, may overcome these protective mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-63-1-63
1970-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/63/1/mic-63-1-63.html?itemId=/content/journal/micro/10.1099/00221287-63-1-63&mimeType=html&fmt=ahah

References

  1. Baker K. 1968; Low cost continuous culture apparatus. Laboratory Practice 17:817
    [Google Scholar]
  2. Biggins D. R., Postgate J. R. 1969; Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. Journal of General Microbiology 56:181–193
    [Google Scholar]
  3. Bulen W. A., Le Comte J. R. 1966; The nitrogenase system from Azotobacter: two enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 56:979
    [Google Scholar]
  4. Dalton H., Postgate J. R. 1969a; Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. Journal of General Microbiology 54:463
    [Google Scholar]
  5. Dalton H., Postgate J. R. 1969b; Growth and physiology of Azotobacter chroococcum in continuous culture. Journal of General Microbiology 56:307
    [Google Scholar]
  6. Drozd J. W., Postgate J. R. 1970; Interference by oxygen in the acetylene-reduction test for aerobic nitrogen-fixing bacteria. Journal of General Microbiology 60:427–429
    [Google Scholar]
  7. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177:751
    [Google Scholar]
  8. Hardy R.W.F., Holsten R. D., Jackson E. K., Burns R. C. 1968; The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiology 43:1185
    [Google Scholar]
  9. Ivanov I. D., Sitonite Y. P., Belov Y. M. 1965; Nitrogen fixation as a hydrogen accepting process. Mikrobiologiya 34:193
    [Google Scholar]
  10. Ivanov I. D., Matkhanov G. I., Belov Y. M., Gogoleva T. V. 1967; Reduction of molecular nitrogen in model systems. Mikrobiologiya 36:205
    [Google Scholar]
  11. Ivanov I. D., Moshkovskii Y. S., Stukan R. A., Matkhanov G. I., Mardanyan S. S., Belov Y. M. 1968; Investigation of y-resonance spectra of nitrogen-fixing bacteria. Mikrobiologiya 37:407
    [Google Scholar]
  12. Kelly M. 1969a; Some properties of purified nitrogenase of Azotobacter chroococcum. Biochimica et Biophysica Acta 171:9
    [Google Scholar]
  13. Kelly M. 1969b; Comparisons and cross reactions of nitrogenase from Klebsiella pneumoniae, Azotobacter chroococcum and Bacillus polymyxa. Biochimica et Biophysica Acta 191:527
    [Google Scholar]
  14. Jones C. W., Redfearn E. R. 1967; The cytochrome system of Azotobacter vinelandii. Biochimica et Biophysica Acta 143:340
    [Google Scholar]
  15. Knowles C. J., Redfearn E. R. 1968; The effect of combined nitrogen sources on the synthesis and function of electron transport system of Azotobacter vinelandii. Biochimica et Biophysica Acta 162:348
    [Google Scholar]
  16. Lisenkova L. L., Khmel I. A. 1967; Effect of cultural conditions on the cytochrome content of Azotobacter vinelandii cells. Mikrobiologiya 36:905
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265
    [Google Scholar]
  18. Meyerhof O., Burk D. 1928; Über die Fixation des Luftstickstofife durch Azotobakter. Zeitschrift für Physiologische Chemie (A) 139:117
    [Google Scholar]
  19. Oppenheim J., Marcus L. 1970; Correlation of ultrastructure in Azotobacter vinelandii with nitrogen source for growth. Journal of Bacteriology 101:286
    [Google Scholar]
  20. Oppenheim J., Fisher R. J., Marcus L., Wilson P. W. 1970; Properties of a soluble nitrogenase in Azotobacter. Journal of Bacteriology 10 1:292
    [Google Scholar]
  21. Parker C. A. 1954; Effect of oxygen on the fixation of nitrogen by Azotobacter. Nature; London: 173780
    [Google Scholar]
  22. Parker C. A., Scutt P. B. 1960; The effect of oxygen on nitrogen fixation by Azotobacter. Biochimica et Biophysica Acta 38:230
    [Google Scholar]
  23. Phillips D. H., Johnson M. J. 1961; Measurement of dissolved oxygen in fermentations. Journal of Biochemical, Microbiological and Technical Engineering 3:277
    [Google Scholar]
  24. Pinchinoty F. 1963; Recherches sur la nitrate-réductase d’Aerobacter aerogenes. Annales de l’Institut Pasteur, Paris 104:394
    [Google Scholar]
  25. Pinchinoty F., Bigliardi-Rouvier J. 1963; Recherches sur la tétrathionate-réductase d’une bactérie anaérobie facultative. Biochimica et Biophysica Acta 67:366
    [Google Scholar]
  26. Stewart W. D., Fitzgerald G. P., Burris R. H. 1967; In situ studies on N2 fixation using the acetylene reduction technique. Proceedings of the National Academy of Sciences of the United States of America 58:2071
    [Google Scholar]
  27. Strandberg G. W., Wilson P. W. 1968; Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Canadian Journal of Microbiology 14:25
    [Google Scholar]
  28. Swank R. T., Burris R. H. 1969; Purification and properties of cytochromes c of Azotobacter vinelandii. Biochimica et Biophysica Acta 180:473
    [Google Scholar]
  29. Wilson P. W. 1958; Asymbiotic nitrogen fixation. In Encyclopedia of Plant Physiology p. 9 Ruhland W. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  30. Yates M. G. 1970; Control of respiration and nitrogen fixation by oxygen and adenine nucleotides in N2-grown Azotobacter chroococcum. Journal of General Microbiology 60:393–401
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-63-1-63
Loading
/content/journal/micro/10.1099/00221287-63-1-63
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error