1887

Abstract

SUMMARY: Cyanide (1 m) strongly inhibited aerobic respiration, and 2,4 dinitrophenol (0·2 m) apparently uncoupled oxidative phosphorylation, in nongrowing Citrobacter. At these inhibitor concentrations, anaerobic tetrathionate reductase activity was not much affected. Aeration inhibited tetrathionate reductase activity; 0·2 m-2,4 DNP did not influence oxygen inhibition, but 1 m-KCN restored the reductase activity quantitatively. The process of aerobic respiration rather than the oxygen molecule itself therefore inhibits tetrathionate reductase activity. Induced synthesis of reductase required anaerobic conditions. Cyanide and 2,4 DNP allowed anaerobic synthesis of reductase; aeration prevented it. This effect of oxygen was abolished neither by KCN nor by 2,4 DNP. Oxygen therefore represses the synthesis of tetrathionate reductase directly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-62-1-95
1970-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/62/1/mic-62-1-95.html?itemId=/content/journal/micro/10.1099/00221287-62-1-95&mimeType=html&fmt=ahah

References

  1. Dixon M. 1953; The determination of enzyme inhibitor constants. Biochemical Journal 55:170–171
    [Google Scholar]
  2. Dolin M. I. 1961; Survey of microbial electron transport mechanisms. In The Bacteria 2 p. 356 Gunsalus I. C., Stanier R. Y. Edited by New York and London: Academic Press;
    [Google Scholar]
  3. Fowler C. B. 1951; The relationship between fermentation and enzymatic adaptation. Biochimica et Biophysica Acta 7:563–573
    [Google Scholar]
  4. Gray C. T., Wimpenny J. W. T., Hughes D. E., Mossman M. S. 1966; Regulation of metabolism in facultative bacteria. I. Structural and functional changes in Escherichia coli associated with shifts between the aerobic and anaerobic states. Biochimica et Biophysica Acta 117:22–32
    [Google Scholar]
  5. Gray C. T., Wimpenny J. W. T., Mossman M. R. 1966; Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli . Biochimica et Biophysica Acta 117:33–41
    [Google Scholar]
  6. James W. O. 1953; The use of respiratory inhibitors. Annual Review of Plant Physiology 4:59–90
    [Google Scholar]
  7. Kaprálek F., Pichinoty F., Riegrová J. 1969; Kinetics of reduction of tetrathionate by intact bacterial cells. Folia Microbiologica, Praha 14:460–469
    [Google Scholar]
  8. Knox R., Gell P. G. H., Pollock M. R. 1943; The selective action of tetrathionate in bacteriological media. Journal of Hygiene, Cambridge 43:147–158
    [Google Scholar]
  9. Knox R., Pollock M. R. 1944; Bacterial tetrathionase: adaptation without demonstrable cell growth. Biochemical Journal 38:299–304
    [Google Scholar]
  10. Le Minor L. 1967; Distribution de la tétrathionate-réduetase chez divers sérotypes de Salmonella. Annales de l#x2019;Institut Pasteur, Paris 113:117–123
    [Google Scholar]
  11. Le Minor L., Pichinoty F. 1963; Recherche de la tétrathionate-réduetase chez les bactéries Gram négatives anaerobies facultatives (Enterobacteriaceae, Aeromonas et Pasteurella). Annales de l’Institut Pasteur, Paris 104:384–393
    [Google Scholar]
  12. Nicolle P., Le Minor L. 1965; Sur la présence ou l’absence de la réductase du tétrathionate dans une collection de bacilles typhiques de provenances varieés. Annales de l’Institut Pasteur, Paris 108:501–513
    [Google Scholar]
  13. Papavassiliou J., Samaraki-Lyberopoulou V., Piperakis G. 1969; Production of tetrathionate reductase by Salmonella. Canadian Journal of Microbiology 15:238–240
    [Google Scholar]
  14. Pichinoty F. 1965; L’effet oxygène et la biosynthèse des enzymes d’oxydoréduction bactériens. In Mecanismes de Regulation des Activités Cellularies chez les Micro-organismes p. 507 Paris: C.N.R.S;
    [Google Scholar]
  15. Pichinoty F., Bigliardi-Rouvier J. 1963; Recherches sur la tétrathionate-réduetase d’une bactérie anerobie facultative. Biochimica et Biophysica Acta 67:366–378
    [Google Scholar]
  16. Pollock M. R. 1946; Adaptation of ‘nitratase’ in washed suspensions of bacteria. British Journal of Experimental Pathology 27:419–432
    [Google Scholar]
  17. Pollock M. R., Knox R. 1943; Bacterial reduction of tetrathionate. Biochemical Journal 37:476–481
    [Google Scholar]
  18. Pollock M. R., Knox R., Gell P. G. H. 1942; Bacterial reduction of tetrathionate. Nature; London: 15094
    [Google Scholar]
  19. Robbie W. A. 1946; The quantitative control of cyanide in manometric experimentation. Journal of Cellular and Comparative Physiology 27:181–209
    [Google Scholar]
  20. Sedlak J., Slajsova M. 1967; Taxonomie du coliforme 1433. Annales de l’Institut Pasteur, Paris 112:119–121
    [Google Scholar]
  21. Slater E. C. 1963; Uncouplers and inhibitors of oxidative phosphorylation. In Metabolic Inhibitors 2 p. 503 Hochster R. M., Quastel J. H. Edited by New York and London: Academic Press;
    [Google Scholar]
  22. Stickland L. H. 1931; The reduction of nitrates by Bact. coli. Biochemical Journal 25:1543–1544
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-62-1-95
Loading
/content/journal/micro/10.1099/00221287-62-1-95
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error