1887

Abstract

SUMMARY

Enzymic casein hydrolysate, which is a suitable nitrogenous basis of the medium for alph-toxin production by (), was fractionated by column chromatography on Sephadex G25 gel, using ammoniacal buffer. Combined peptidic fractions were able to support microbial growth, though toxin production was minimal. Toxinogenic substances were retained on the gel and could be eluted with weak acetic acid. This active substance represented about 0·5% of the original hydrolysate and consisted of a mixture of low molecular weight peptides with free amino acids and a mineral portion (calcium, magnesium and iron). When column chromatography of enzymic casein hydrolysate was done with Sephadex G25 and 0·05 -ammonium hydrogen carbonate buffer, toxinogenic substances were not retained on the gel. The procedure resulted in a group separation of peptides according to their molecular weight and simultaneously an adsorption effect was observed of aromatic amino acids on the gel. Four fractions were obtained exhibiting different effects on growth and toxinogenesis by .

The fraction containing the largest molecules and the major part of total nitrogen (90% approx.) proved to stimulate microbial growth, though only minimal α-toxin production. The other three low molecular fractions exhibit a stimulating effect on α-toxin production; their amino acid compositions were different.

The most active of the low molecular weight fractions contained about 1·8% of the initial nitrogen and could be fractionated with DEAE-Sephadex A25 into a further four groups of which the most remarkable was peptide-bound tyrosine.

Gel chromatography on Sephadex columns resulted in an unequal distribution of Fe ions among the fractions; this was allowed for in performing comparative microbiological tests.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-62-1-3
1970-07-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/62/1/mic-62-1-3.html?itemId=/content/journal/micro/10.1099/00221287-62-1-3&mimeType=html&fmt=ahah

References

  1. Adams M. H., Hendee E. D. 1945; Methods for the production of the alpha and theta toxins of Clostridium welchii . Journal of Immunology 51:249
    [Google Scholar]
  2. Adams M. H., Hendee E. D., Pappenheimer A. M. 1947; Factors involved in production of Clostridium welchii alpha toxin. Journal of Experimental Medicine 85:701
    [Google Scholar]
  3. Boyd M. J., Logan M. A., Tytell A. A. 1948; The growth requirements of Clostridium perfringens (welchii) bp6k . Journal of Biological Chemistry 174:1013
    [Google Scholar]
  4. Carnegie P. R. 1961; Separation of low molecular weight peptides from amino acids on ‘DEAE-Sephadex’. Nature; London: 18658
    [Google Scholar]
  5. Determann H., Walter I. 1968; Source of aromatic affinity to ‘Sephadex’ dextran gels. Nature; London: 219604
    [Google Scholar]
  6. Fry B. A. 1955 The Nitrogen Metabolism of Micro-organisms London: Methuen and Co. Ltd;
    [Google Scholar]
  7. Gelotte B. 1960; Studies on gel filtration. Sorption properties of the bed material Sephadex. Journal of Chromatography 3:330
    [Google Scholar]
  8. Hais I. M., Macek K. 1959 Papirova Chromatografie Praha, ČSSR: Nakladatelstvi Československé Akademie Vĕd;
    [Google Scholar]
  9. van Heyningen W. E. 1941; Thebiochemistry of the gas gangrene toxins. I. Estimation of thealpha-toxin of Clostridium welchii, type A. Biochemical Journal 35:1246
    [Google Scholar]
  10. Jayko L. G., Lichstein H. C. 1959; Nutritional factors concerned with growth and lecithinase production by Clostridium perfringens . Journal of Infectious Diseases 104:142
    [Google Scholar]
  11. Kémeny L., Illés E. 1952; Wertbemessung der Perfringens Sera mit der Lecitho-vitellinprobe. Acta Veterinaria Academiae Scientiarum Hungaricae 2:79
    [Google Scholar]
  12. Kihara H., Snell E. E. 1960; Peptides and bacterial growth. IX. Release and double inhibition with single peptides. Journal of Biological Chemistry 235:1415
    [Google Scholar]
  13. Logan M. A., Tytell A. A., Danielson J. S., Griner A. M. 1945; Production of Clostridium perfringens alpha-toxin. Journal of Immunology 51:317
    [Google Scholar]
  14. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265
    [Google Scholar]
  15. Macfarlane M. G., Knight B. C. J. G. 1941; The biochemistry of bacterial toxins. I. Lecithinase activity of Clostridium welchii toxins. Biochemical Journal 35:884
    [Google Scholar]
  16. Mikeš O., Kakol I., Zbrozyna A. J., Šorm F. 1960; On proteins. LVIII. Growth stimulating peptides from neutral fraction of a partial acid hydrolysate of chymotrypsinogen. Collection of Czechoslovak Chemical Communications 25:1938
    [Google Scholar]
  17. Murata R., Yamada T., Kameyama S. 1958; Production of alpha-toxin of Clostridium perfringens. III. The role of certain unidentified factors on the toxin production. Japanese Journal of Medical Science and Biology 11:427
    [Google Scholar]
  18. Pappenheimer A. M., Shaskan E. 1944; Effect of iron on carbohydrate metabolism of Clostridium welchii . Journal of Biological Chemistry 155:265
    [Google Scholar]
  19. Phillips A. W., Gibbs P. A. 1961; Techniques for the fractionation of microbiologically active peptides derived from casein. Biochemical Journal 81:551
    [Google Scholar]
  20. Prescott J. M., Peters J. V., Snell E. E. 1953; Peptides and bacterial growth. V. Serine peptides and growth of Lactobacillus delbrueckii . Journal of Biological Chemistry 202:533
    [Google Scholar]
  21. Rogers R. J., Knight B. C. J. G. 1946; The recognition of material present in horse muscle affecting the formation of α-toxin by a strain of Clostridium welchii . Biochemical Journal 40:400
    [Google Scholar]
  22. Rosen H. 1957; A modified method of ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics 67:10
    [Google Scholar]
  23. Schroeder W. A., Kay L. M., Mills R. S. 1950; Quantitative determination of amino acids by iodometric titration of their copper salts. Analytical Chemistry 22:760
    [Google Scholar]
  24. Shankar K., Bard R. C. 1952; The effect of metallic ions on the growth and morphology of Clostridium perfringens . Journal of Bacteriology 63:279
    [Google Scholar]
  25. Sprince H. 1960; A modified Ehrlich benzaldehyde reagent for detection of indoles on paper chromatograms. Journal of Chromatography 3:97
    [Google Scholar]
  26. Stavri D., Bittner J., Ficiu S. 1964; Méthode simple pour l’obtention constante d’une alpha-toxine perfringens à titre élevé. Archives Roumaines de Pathologic Expérimental et de Microbiologie 23:1025
    [Google Scholar]
  27. Stone D., Hoberman H. D. 1953; Utilization of proline peptides by a prolineless mutant of Escherichia coli . Journal of Biological Chemistry 202:203
    [Google Scholar]
  28. Taylor A. W., Stewart J. 1941; Toxin produced by Clostridium welchii in a simple medium. Journal of Pathology and Bacteriology 53:87
    [Google Scholar]
  29. Vaněček J. 1961; Eluce papirových chromatogramu. In: Mikeš a kolektiv. Přiručka Laboratorních Chromatografických Metod Praha, ČSSR: Státní Nakladatelstvi Technické Literatury;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-62-1-3
Loading
/content/journal/micro/10.1099/00221287-62-1-3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error