1887

Abstract

SUMMARY: A small proportion of spontaneous penicillinase-negative mutants of the penicillinase-magno-constitutive strain 569/ prove to be highly unstable and revert to the relatively stable magno-constitutive parent phenotype at a high rate spontaneously. If incubated at 45° or at the normal growth temperature of 35° with chloramphenicol (20 g./ml.) the organisms of a broth culture of this meta-stable negative strain can be induced to undergo 100% conversion to the fully de-repressed magno-constitutive state within 90 to 120 min. The conversion event appears to occur at random amongst the bacilli, whether single or joined in pairs; there is little or no phenotypic lag between committal to reproduction in the derepressed state and full expression of gene potential in the form of maximal rate of penicillinase production and a 1000-fold increase in penicillin resistance. Induced conversion is inhibited by nalidixic acid (10 g./ml.).

It is concluded that the conversion event, for which some possible mechanisms are discussed, is controlled by a thermo-labile protein inhibitor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-59-3-303
1969-12-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/59/3/mic-59-3-303.html?itemId=/content/journal/micro/10.1099/00221287-59-3-303&mimeType=html&fmt=ahah

References

  1. Bainbridge B. W., Roper J. A. 1966; Observations on the effects of a chromosome duplication in Aspergillus nidulans. . J. gen. Microbiol 42:417
    [Google Scholar]
  2. Barbour S. D. 1967; Effect of nalidixic acid on conjugational transfer and expression of episomal lac genes in Escherichia coli k12.. J. molec. Biol 28:373
    [Google Scholar]
  3. Brink R. A. 1964; Genetic repression in multicellular organisms.. Amer. Nat 98:193
    [Google Scholar]
  4. Brink R. A., Styles E. D., Axtell J. D. 1968; Paramutation: directed genetic change.. Science, N.Y. 159:161
    [Google Scholar]
  5. Collins J. F., Mandelstam J., Pollock M. R., Richmond M. H., Sneath P. H. A. 1965; A suggested phenotypic classification and terminology for enzyme mutants in micro-organisms.. Nature, Lond 208:841
    [Google Scholar]
  6. Cook T. M., Brown K. G., Boyle J. V., Goss W. A. 1966; Bactericidal action of nalidixic acid on Bacillus subtilis. . J. Bact 92:1510
    [Google Scholar]
  7. Crompton B., Jago M., Crawford K., Newton G. G. F., Abraham E. P. 1962; Behaviour of some derivatives of 7-amino-cephalosporanic acid and 6-amino penicillanic acid as substrates, inhibitors and inducers of penicillinases.. Biochem. J 83:52
    [Google Scholar]
  8. Cruickshank R. 1965 Medical Microbiology, 11th edn.. Edinburgh and London: E. and S. Livingstone.;
    [Google Scholar]
  9. Dawson G. W. P., Keary P. F. 1963; Episomic control of mutation in Salmonella typhimurium. . Heredity, Lond 18:1
    [Google Scholar]
  10. Delbrück M. 1949; Discussion in ‘Unités biologiques douées de continuité génétique’. 33 Ed. CNRS, Paris.:
    [Google Scholar]
  11. Dubnau D. A., Pollock M. R. 1965; The genetics of Bacillus licheniformis penicillinase: a preliminary analysis from studies on mutation and inter-strain and intra-strain transformations.. J. gen. Microbiol 41:7
    [Google Scholar]
  12. Felkner I. C., Wyss O. 1964; A substance produced by competent Bacillus cereus 569 cells that affects transformability.. Biochem. biophys. Res. Comm 16:94
    [Google Scholar]
  13. Fincham J. R. S. 1967; Mutable genes in the light of Callan’s hypothesis of serially repeated gene copies.. Nature, Lond 215:864
    [Google Scholar]
  14. Fraser D. K., Baird J. P., Kleeman J. M. 1969; Formation of heterozygotes in mixed cultures of B. cereus. . Genetics, Princeton (in the Press).
    [Google Scholar]
  15. Goldberg I. D., Gwinn D. D. 1968; Transformation in Bacillus cereus: a critique.. Biochem. biophys. Res. Comm 31:267
    [Google Scholar]
  16. Goss W. A., Dietz W. H., Cook T. M. 1964; Mechanism of action of nalidixic acid on Escherichia coli. . J. Bact 88:1112 89, 1068.
    [Google Scholar]
  17. Harrison B. J., Fincham J. R. S. 1967; Instability at the pal locus in Antirrhinum majus. 2. Multiple alleles produced by mutation of one original unstable allele.. Heredity, Lond 22:211
    [Google Scholar]
  18. Hayes W. 1964 The Genetics of Bacteria and Their Viruses Oxford: Blackwell.;
    [Google Scholar]
  19. Kogut M., Pollock M. R., Tridgell E. J. 1956; Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: a comparison of its properties with those of a similarly purified penicillinase produced spontaneously by a constitutive mutant strain.. Biochem. J 62:391
    [Google Scholar]
  20. Kuwabara S., Abraham E. P. 1967; Some properties of two extracellular β-lactamases from Bacillus cereus 569/H.. Biochem. J 103:27C.
    [Google Scholar]
  21. Lyon M. F. 1968; Chromosomal and subchromosomal inactivation.. A. Rev. Genet 2:31
    [Google Scholar]
  22. McClintock B. 1961; Some parallels between gene control systems in maize and in bacteria.. Amer. Nat 95:265
    [Google Scholar]
  23. McClintock B. 1965; The control of gene action in maize.. Brookhaven Symp. Biol 18:162
    [Google Scholar]
  24. Monod J., Jacob F. 1961; General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation.. Cold Spring Harb. Symp. quant. Biol 26:389
    [Google Scholar]
  25. Morse M. L. 1967; Reversion instability of an extreme polar mutant of the galactose operon.. Genetics, Princeton 56:331
    [Google Scholar]
  26. Nga B. H., Roper J. A. 1968; Quantitative intrachromosomal changes arising at mitosis in Aspergillus nidulans. . Genetics, Princeton 58:193
    [Google Scholar]
  27. Perret C. J. 1954; Iodometric assay of penicillinase.. Nature, Lond 174:1012
    [Google Scholar]
  28. Pollock M. R. 1953a; Penicillinase adaptation and fixation of penicillin sulphur by Bacillus cereus spores.. J. gen. Microbiol 8:186
    [Google Scholar]
  29. Pollock M. R. 1953b; Stages in enzyme adaptation.. Symp. Soc. gen. Microbiol. no 3150
    [Google Scholar]
  30. Pollock M. R. 1957; Penicillin-induced resistance to penicillin in cultures of Bacillus cereus.. Ciba Foundation Symp. on ‘Drug Resistance in Micro-organisms’78 Ed. by Wolstenholme G. E. W., O’Connor C. M. London: J. and A. Churchill, Ltd.;
    [Google Scholar]
  31. Pollock M. R. 1961; The measurement of the liberation of penicillinase from Bacillus subtilis. . J. gen. Microbiol 26:239
    [Google Scholar]
  32. Pollock M. R., Torriani A. M. 1953; Purification et caractéristiques physico-chimiques de la pénicillinase de Bacillus cereus. . C. r. Séanc Acad. Sci., Paris 237:276
    [Google Scholar]
  33. Smith N. R., Gordon R. E., Clark F. E. 1952; Aerobic spore forming bacteria.. Agriculture Monogr no. 16, p. 43
    [Google Scholar]
  34. Smith-Keary P. F., Dawson G. W. P. 1964; Episomic suppression of phenotype in Salmonella . Genet. Res 5:269
    [Google Scholar]
  35. Thorne C. B. 1968; Transducing bacteriophage for Bacillus cereus. . J. Virol 2:657
    [Google Scholar]
  36. Torriani A-M. 1960; Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. . Biochim. biophys. Acta 38:460
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-59-3-303
Loading
/content/journal/micro/10.1099/00221287-59-3-303
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error