1887

Abstract

SUMMARY

organisms were grown in lactose-limited batch culture and transferred, after washing, to phosphate buffer at the growth temperature. Soluble protein was released from viable organisms into the suspending buffer and the intracellular free amino acid pool declined steadily with the components appearing in the suspending buffer; a net increase in the total amount of free amino acid indicated some protein hydrolysis. RNA was hydrolysed, resulting in the release of u.v.-absorbing bases and ribose from the organisms. Conditions which promoted rapid RNA breakdown also produced rapid death rates and long cell division lags in surviving organisms. After 28 hr starvation in buffer containing Mg, the bacterial dry wt decreased by 26 %; loss of RNA, protein and free amino acids accounted for 10·3 %, 7·3 % and 2·7 % of the total bacterial mass loss. The products of polymer hydrolysis appeared to be released in an undegraded form into the external buffer and there was no appreciable formation of lactate, ammonia or volatile fatty acids, possibly indicating the absence of any important endogenous energy sources. There was no appreciable degradation of DNA or carbohydrate but phospholipid was broken down on prolonged starvation. No polyglucose or poly--hydroxybutyrate was detected in the organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-58-3-347
1969-11-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/58/3/mic-58-3-347.html?itemId=/content/journal/micro/10.1099/00221287-58-3-347&mimeType=html&fmt=ahah

References

  1. Barker S. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological material. J. biol. Chem 138:535
    [Google Scholar]
  2. Brown A. D. 1964; Aspects of bacterial response to the ionic environment. Bact. Rev 28:296
    [Google Scholar]
  3. Burleigh I. G., Dawes E. A. 1967; Studies on the endogenous metabolism and senescence of starved Sarcina lutea . Biochem. J 102:236
    [Google Scholar]
  4. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  5. Burton K., Petersen G. B. 1960; Frequencies of certain sequences of nucleotides in deoxyribonucleic acid. Biochem. J 75:17
    [Google Scholar]
  6. Conway E. J. 1947 In Microdiffusion Analysis and Volumetric Error London: Crosby, Lockwood;
    [Google Scholar]
  7. Dawes E. A., Ribbons D. W. 1962; The endogenous metabolism of micro-organisms. A. Rev. Microbiol 16:241
    [Google Scholar]
  8. Dawes E. A., Ribbons D. W. 1964; Some aspects of the endogenous metabolism of bacteria. Bad. Rev 28:126
    [Google Scholar]
  9. Dawes E. A., Ribbons D. W. 1965; Studies on the endogenous metabolism of Escherichia coli . Biochem. J 95:332
    [Google Scholar]
  10. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res 5:126
    [Google Scholar]
  11. Folch J., Lees M., Stanley G. H. S. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem 226:497
    [Google Scholar]
  12. Hamilton I. R. 1968; Synthesis and degradation of intracellular polyglucose in Streptococcus salivarius . Can. J. Microbiol 14:65
    [Google Scholar]
  13. Hirsch J., Ahrens E. H. 1958; The separation of complex lipid mixtures by the use of silicic acid chromatography. J. biol. Chem 233:311
    [Google Scholar]
  14. Horning E. C., Ahrens E. H., Lipsky S. R., Mattson F. H., Mead J. F., Turner D. A., Goldwater W. H. 1964; Quantitative analysis of fatty acids by gas-liquid chromatography. J. Lipid Res 5:20
    [Google Scholar]
  15. Humphries E. C. 1956 In Modern Methods of Plant Analysis Paech K., Tracey M. V. 1479 Berlin: Springer-Verlag;
    [Google Scholar]
  16. Ikawa M. 1963; Nature of the lipids of some lactic acid bacteria. J. Bact 85:772
    [Google Scholar]
  17. James A. T. 1960 In Methods of Biochemical Analysis Glide D. 87 New York: Interscience;
    [Google Scholar]
  18. Kates M. 1964; Bacterial lipids. Adv. Lipid Res 2:17
    [Google Scholar]
  19. Kntvett V. A., Cullen J. 1967; Fatty acid synthesis in Escherichia coli . Biochem. J 103:299
    [Google Scholar]
  20. Lamanna C. 1963; Endogenous metabolism with special reference to bacteria. Ann. N. Y. Acad. Sci 102:515
    [Google Scholar]
  21. Lovett S. 1964; Effect of deuterium on starving bacteria. Nature, Lond 203:429
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. biol. Chem 193:265
    [Google Scholar]
  23. Macleod P., Jensen R. G., Gander G. W., Sampugna J. 1962; Quantity and fatty acid composition of lipid extracted from cells of Streptococcus lactis . J. Bact 83:806
    [Google Scholar]
  24. Mangold H. K. 1961; Thin-layer chromatography of lipids. J. Am. Oil Chem. Soc 38:708
    [Google Scholar]
  25. Mejbaum W. 1929; Estimation of small amounts of pentose especially in derivatives of adenylic acid. Hoppe-Seyler,s Z. physiol. Chem 258:117
    [Google Scholar]
  26. Munro H. N., Fleck A. 1966 In Methods of Biochemical Analysis Glick D. 14113 New York: Interscience;
    [Google Scholar]
  27. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem 153:375
    [Google Scholar]
  28. Postgate J. R. 1967; Viability measurements and the survival of microbes under minimum stress. Adv. microb. Physiol 1:1
    [Google Scholar]
  29. Postgate J. R., Hunter J. R. 1962; The survival of starved bacteria. J. gen. Microbiol 29:233
    [Google Scholar]
  30. Postgate J. R., Hunter J. R. 1964; Accelerated death of Aerobacter aerogents starved in the presence of growth-limiting substrates. J. gen. Microbiol 34:459
    [Google Scholar]
  31. Powell E. O. 1967 In Microbial Physiology and Continuous Culture56 London: H.M.S.O;
    [Google Scholar]
  32. Ribbons D. W., Dawes E. A. 1963; Environmental and growth conditions affecting the endogenous metabolism of bacteria. Ann. N. Y. Acad. Sci 102:564
    [Google Scholar]
  33. Salton M. R. J. 1967; Structure and function of bacterial cell membranes. A. Rev. Microbiol 21:417
    [Google Scholar]
  34. Schaechter M., MaalØe O., Kjeldgaard N. O. 1958; Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol 19:592
    [Google Scholar]
  35. Schlenk H., Gellerman J. L. 1960; Esterification of fatty acids with diazomethane, on a small scale. Analyt. Chem 32:1412
    [Google Scholar]
  36. Spendlove R., Weiser H. H., Harper W. J. 1957; Factors affecting the initiation of respiration of Streptococcus lactis. Appl. Microbiol 5:281
    [Google Scholar]
  37. Stickland L. H. 1951; The determination of small quantities of bacteria by means of the biuret reaction. J. gen. Microbiol 5:698
    [Google Scholar]
  38. Strange R. E. 1967; Metabolism of endogenous constituents and survival in starved bacterial suspensions. Biochem. J 102:34
    [Google Scholar]
  39. Strange R. E., Dark F. A. 1965; ‘Substrate-accelerated death’ of Aerobacter aerogenes. J. gen. Microbiol 39:215
    [Google Scholar]
  40. Strange R. E., Hunter J. R. 1967 In Microbial Physiology and Continuous Culture102 London: H.M.S.O;
    [Google Scholar]
  41. Strange R. E., Postgate J. R. 1964; Penetration of substances into cold-shocked bacteria. J. gen. Microbiol 36:393
    [Google Scholar]
  42. Strange R. E., Shon M. 1964; Effects of thermal stress on viability and ribonucleic acid of Aerobacter aerogenes in aqueous suspension. J. gen. Microbiol 34:99
    [Google Scholar]
  43. Strange R. E., Dark F. A., Ness A. G. 1961; The survival of stationary phase Aerobacter aerogenes stored in aqueous suspension. J. gen. Microbiol 25:61
    [Google Scholar]
  44. Tempest D. W., Strange R. E. 1966; Variation in content and distribution of magnesium and its influence on survival, in Aerobacter aerogenes grown in a chemostat. J. gen. Microbiol 44:273
    [Google Scholar]
  45. Tempest D. W., Herbert D., Phipps P. J. 1967 In Microbial Physiology and Continuous Culture240 London: H.M.S.O;
    [Google Scholar]
  46. Thomas T. D. 1968; The metabolism of lactic acid bacteria. Ph.D. thesis Massey University; New Zealand:
    [Google Scholar]
  47. Thomas T. D., Batt R. D. 1968; Survival of Streptococcus lactis in starvation conditions. J. gen. Microbiol 50:367
    [Google Scholar]
  48. Thomas T. D., Lyttleton P., Williamson K. I., Batt R. D. 1969; Changes in permeability and ultrastructure of starved Streptococcus lactis in relation to survival. J. gen. Microbiol 58:381
    [Google Scholar]
  49. Trevelyan W. E., Harrison J. S. 1952; Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochem. J 50:298
    [Google Scholar]
  50. Vorbeck M. L., Marinetti G. V. 1965a; Separation of glycosyl diglycerides from phosphatides using silicic acid column chromatography. J. Lipid Res 6:3
    [Google Scholar]
  51. Vorbeck M. L., Marinetti G. V. 1965b; Intracellular distribution and characterization of the lipids of Streptococcus faecalis (atcc 9790). Biochemistry, N. Y 4:296
    [Google Scholar]
  52. Williamson D. H., Wilkinson J. F. 1958; The isolation and estimation of the poly-β-hydroxy- butyrate inclusions of Bacillus species. J. gen. Microbiol 19:198
    [Google Scholar]
  53. Yemm E. W., Cocking E. C. 1955; The determination of amino acids with ninhydrin. Analyst, Lond 80:209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-58-3-347
Loading
/content/journal/micro/10.1099/00221287-58-3-347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error