1887

Abstract

SUMMARY

Disrupted cells of some Desulfovibrio species, of and of certain other anaerobes produced methane as a minor product of pyruvic phosphoroclasm. In one Desulfovibrio species the reaction, which was not specially sensitive to air, involved vitamin B, co-enzyme A, thiamine pyrophosphate, magnesium ions and acetyl phosphate. Adenine and other nucleotides stimulated the reaction; a mixture of ATP and AMP was most effective. Methionine stimulated the reaction but the other methyl donors did not. In optimal conditions methane accounted for 0·1 to 0·02 mole % of the pyruvate metabolized, formed at 20 to 30 nl. CH/mg. bacterial protein/hr. Tests in DO indicated that the methane came from the methyl-carbon of pyruvate; correspondingly, ethane formation from -ketobutyrate was detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-57-3-293
1969-08-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/57/3/mic-57-3-293.html?itemId=/content/journal/micro/10.1099/00221287-57-3-293&mimeType=html&fmt=ahah

References

  1. Baker K. 1968; Low cost continuous culture apparatus. Lab. Pract 17:817
    [Google Scholar]
  2. Biggins D. R., Dilworth M. F. 1968; Control of pyruvic phosphoroclastic activity in extracts of Clostridium pasteurianum by ADP and acetyl phosphate. Biochim. biophys. Ada 156:285
    [Google Scholar]
  3. Blaylock B. A., Stadtman T. C. 1963; Biosynthesis of methane from the methyl moeity of methyl cobalamin. Biochem. biophys. Res. Commun 11:34
    [Google Scholar]
  4. Blaylock B. A., Stadtman T. C. 1964; Enzymic formation of methyl cobalamin in Methanosarcina barkerii extracts. Biochem. biophys. Res. Commun 17:479
    [Google Scholar]
  5. Carnahan J. E., Mortenson L., Mower H. F., Castle J. E. 1960; Nitrogen fixation by cell-free extracts of Clostridium pasteurianum . Biochim. biophys. Acta 38:188
    [Google Scholar]
  6. Davis J. B., Yarbrough H. F. 1966; Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricons . Chem. Geol 1:137
    [Google Scholar]
  7. Gottschalk G. 1968; The stereospecificity of the citrate synthase of sulfate-reducing and photosynthetic bacteria. Eur. J. Biochem 5:346
    [Google Scholar]
  8. Ishimoto M., s Yagi T., Shiraki M. 1957; Biochemical studies on sulfate-reducing bacteria VIII. The function of cytochrome of sulfate-reducing bacteria in decomposition of formate and reduction of sulfur and hydoxylamine. J. Biochem., Tokyo 44:707
    [Google Scholar]
  9. Kelly D. P. 1968; Fluoroacetate toxicity in Thiobacillus neapolitanus and its relevance to the problem of obligate chemo-autotrophy. Arch. Mikrobiol 61:59
    [Google Scholar]
  10. Kelly M., Postgate J. R., Richards R. L. 1967; Reduction of cyanide and isocyanide by nitrogenase of Azotobacter chroococcum . Biochem. J 102:1 c
    [Google Scholar]
  11. Klein R. M., Cronquist A. 1967; A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological and physiological characters in the thallophytes. Q. Rev. Biol 4a:105
    [Google Scholar]
  12. Millet J. 1954; Dégradation anaérobie du pyruvate par un extrait enzymatique de Desulfovibrio desulfur icons . C. r. hebd. Séanc. Acad. Sci Paris: 238:408
    [Google Scholar]
  13. Peck H. D. 1967; Some evolutionary aspects of inorganic sulfur metabolism. Lectures on Theoretical and Applied Aspects of Microbiology University of Maryland;
    [Google Scholar]
  14. Peel J. L. 1963; The catalysis of the auto-oxidation of 2-mercaptoethanol and other thiols by vitamin B12 derivatives. Biochem. J 58:296
    [Google Scholar]
  15. Postgate J. R. 1953; On the nutrition of Desulfovibrio desulfuricans: a correction. J. gen. Microbiol 9:440
    [Google Scholar]
  16. Postgate J. R. 1966; Media for sulphur bacteria. Lab. Pract 15:1239
    [Google Scholar]
  17. Postgate J. R. 1969; Methane as a minor product of pyruvic phosphoroclasm in Desulfovibrio. J. gen. Microbiol 55:xv
    [Google Scholar]
  18. Sadana J. 1954; Pyruvate oxidation in Desulfovibrio desulfuricans . J. Bact 67:547
    [Google Scholar]
  19. Sisler F. D., ZoBell C. E. 1951; Hydrogen utilization by some marine sulfate-reducing bacteria. J. Bact 62:117
    [Google Scholar]
  20. Sorokin Y. 1956; Study of cultures of sulphate-reducing bacteria isolated from some natural materials of the country round Bajkal. Proc. Bajkal Limnol. Stn 15397 In Russian
    [Google Scholar]
  21. Sorokin Y. 1957; Contribution to the question of utilization of methane for the formation of sulphide by sulphate-reducing bacteria. C.R. Acad. Sci U.S.S.R; 115816 In Russian
    [Google Scholar]
  22. Stadtman T. C. 1967; Methane fermentation. A. Rev. Microbiol ax:121
    [Google Scholar]
  23. Stadtman T. C., Barker H. A. 1951; Studies on the methane bacteria. VIII. Tracer experiments on fatty acid oxidation by methane bacteria. J. Bact 61:57
    [Google Scholar]
  24. Wiesendanger S. B., Neman B. 1954; Rô1e de l’ATP et du CoA dans la déshydrogénation dupyruvate par les extraits de C. saccharobutyricum . Biochim. biophys. Ada 13:480
    [Google Scholar]
  25. Wolin E. A., Wolfe R. S., Wolin M. J. 1964; Viologen dye inhibition of methane formation by Methanobacillus omelianskii . J. Bact 87:493
    [Google Scholar]
  26. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. biol. Chem 338:2882
    [Google Scholar]
  27. Yates M. G. 1967; Stimulation of the phosphoroclastic system of Desulfovibrio by nucleotide triphosphates. Biochem. J 103:32 c
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-57-3-293
Loading
/content/journal/micro/10.1099/00221287-57-3-293
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error