1887

Abstract

SUMMARY

( 8003) organisms, grown in continuous culture without fixed nitrogen, had chemical compositions at various dilution rates characteristic of nitrogen-limited populations. Fast-growing variants were selected for at high dilution rates; the efficiency of nitrogen fixation decreased with decreasing growth rate. In suitable media, carbon- and phosphate-limited populations were obtained and showed different compositions; they were very sensitive to inhibition by oxygen. Carbon-limited populations utilizing NH under argon were not oxygen sensitive; they formed nitrogenase when they were N-limited. The chemical compositions of the various populations corresponded to theory for the nutritional state considered. Nitrogen fixation entrained a maintenance coefficient of 1·06 g. substrate/g. organism/hr compared with about 0·40 for ammonia assimilation. Assuming most of this maintenance was directed to respiratory protection of nitrogenase, an extrapolated maximum requirement of 4 moles ATP/mole N fixed was observed. Attempts to repeat reports of (1) dependence of cytochrome pattern on nitrogen fixation and (2) increased efficiency of fixation with ultraviolet-irradiated N were not successful with the strain of used.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-56-3-307
1969-06-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/56/3/mic-56-3-307.html?itemId=/content/journal/micro/10.1099/00221287-56-3-307&mimeType=html&fmt=ahah

References

  1. Aiba S., Nagai S., Nishizawa Y., Onodera M. 1967a; Energetic and nucleic analyses of a chemostatic culture of Azotobacter vinelandii . J. gen. appl. Microbiol., Tokyo 13:73
    [Google Scholar]
  2. Aiba S., Nagai S., Nishizawa Y., Onodera M. 1967b; Nucleic approach to some response of chemostatic culture of Azotobacter vinelandii . J. gen. appl. Microbiol., Tokyo 13:85
    [Google Scholar]
  3. Baginski E. S., Foa P. P., Zak B. 1967; Microdetermination of inorganic phosphate, phospho-lipids and total phosphate in biologic materials. Clin. Chem 13:326
    [Google Scholar]
  4. Baker K. 1968; Low cost continuous culture apparatus. Lab. Pract 17:817
    [Google Scholar]
  5. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. J. gen. Microbiol 23:457
    [Google Scholar]
  6. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  7. Daesch G., Mortenson L. E. 1968; Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J. Bact 96:346
    [Google Scholar]
  8. Dalton H., Postgate J. R. 1968; Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J. gen. Microbiol 54:463
    [Google Scholar]
  9. Dilworth M. J. 1966; Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum . Biochim. biophys. Acta 127:285
    [Google Scholar]
  10. Herbert D. 1959; Some principles of continuous culture. In Recent Progress in Microbiology Tunevall G. 381 Stockholm: Almqvist & Wiksell;
    [Google Scholar]
  11. Herbert D. 1961; The chemical composition of micro-organisms as a function of their environment. Symp. Soc. gen. Microbiol 11391
    [Google Scholar]
  12. Herbert D., Elsworth R. E., Telling R. C. 1956; The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol 14:601
    [Google Scholar]
  13. Ierusalimsky N. D., Zaitseva G. N., Khmel I. A. 1962; Physiology of Azotobacter vinelandii in flow culture. Mikrobiologiya 31:417
    [Google Scholar]
  14. Jensen H. L. 1953; Azotobacter as a crop inoculant. Int. Congr. Microbiol Rome 6 (sect. 18) 245
    [Google Scholar]
  15. Jones C. W., Redfearn E. R. 1967; The cytochrome system of Azotobacter vinelandii . Biochim. biophys. Acta 143:340
    [Google Scholar]
  16. Khmel I. A., Andreeva N. B. 1967; Physiological and biochemical factors governing growth of Azotobacter vinelandii in continuous cultivation on media with ammonium nitrogen. Mikrobiologiya 36:438
    [Google Scholar]
  17. Law J. H., Slepecky R. A. 1961; Assay of poly-β-hydroxybutyric acid. J. Bact 82:33
    [Google Scholar]
  18. Lisenkova L. L., Khmel I. A. 1967; Effect of cultural conditions on cytochrome content of Azotobacter vinelandii cells. Mikrobiologiya 36:905
    [Google Scholar]
  19. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. biol. Chem 193:265
    [Google Scholar]
  20. Mačura J., Kotková M. 1953; Vyroj azotobaktera v proudicím prostředi. Čslká Biol 2:41
    [Google Scholar]
  21. Malek I. 1952; Kultivace azotobaktera v proudicím prostředi. Čslká Biol 1:91
    [Google Scholar]
  22. Malek I., Fencl Z. 1966 Theoretical and Methodological Basis of Continuous Culture of Microorganisms New York: Academic Press;
    [Google Scholar]
  23. Marr A. G., Marcus L. 1962; Kinetics of induction of mannitol dehydrogenase in Azotobacter agilis . Biochim. biophys. Acta 64:65
    [Google Scholar]
  24. Morse M. L., Carter E. C. 1949; The synthesis of nucleic acids in cultures of Escherichia coli, strains b and b/r. J. Bact 58:317
    [Google Scholar]
  25. Newton J. W., Wilson P. W., Burris R. H. 1953; Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J. biol. Chem 204:445
    [Google Scholar]
  26. Parker C. A., Scutt P. B. 1960; The effect of oxygen on nitrogen fixation by Azotobacter. Biochim. biophys. Acta 38:230
    [Google Scholar]
  27. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B 163224
    [Google Scholar]
  28. Postgate J. R., Hunter J. R. 1962; The survival of starved bacteria. J. gen. Microbiol 29:233
    [Google Scholar]
  29. Powell E. O. 1967; The growth rate of micro-organisms as a function of substrate concentration. In Microbiol Physiology and Continuous Culture Powell E. O., Evans C. G. T., Strange R. E., Tempest D. W. 34 London: H.M.S.O;
    [Google Scholar]
  30. Schöllhorn R., Burris R. H. 1967; Reduction of azide by the N2-fixing enzyme system. Proc. natn. Acad. SciU.S.A 571317
    [Google Scholar]
  31. Schulze K. L., Lipe R. S. 1964; Relationship between substrate concentration, growth rate and respiration rate of Escherichia coli in continuous culture. Arch. Mikrobiol 48:1
    [Google Scholar]
  32. Silver W. S. 1967; Biological nitrogen fixation. Science, N.Y 157:100
    [Google Scholar]
  33. Stockdale H., Ribbons D. W., Dawes E. A. 1968; Occurrence of poly-β-hydroxybutyrate in Azotobacteriaceae. J. Bact 95:1798
    [Google Scholar]
  34. Strandberg G. W., Wilson P. W. 1967; Molecular H2 and the pN2 function of Azotobacter. Proc. natn. Acad. SciU.S.A 581404
    [Google Scholar]
  35. Wilson P. W. 1958; Asymbiotic nitrogen fixation. In Encyclopedia of Plant Physiology Ruhland W. 9 Berlin: Springer-Verlag;
    [Google Scholar]
  36. Wilson P. W., Roberts E. R. 1954; Inhibition in Azotobacter vinelandii by nitrous oxide. Biochim. biophys. Acta 15:568
    [Google Scholar]
  37. Zacharias B. 1963a; Effect of u.v.-irradiated nitrogen gas on biological nitrogen fixation in continuous cultures of Azotobacter vinelandii . Acta chem. scand 17:2055
    [Google Scholar]
  38. Zacharias B. 1963b; Detection of positive and negative gas ions in u.v.-irradiated nitrogen gas and the effect on nitrogen fixation in continuous cultures of Azotobader vinelandii . Acta. chem. scand 17:2221
    [Google Scholar]
  39. Zacharias B. 1963c; Effect of nitrogen gas, irradiated with a beta-ray source, on nitrogen fixation in continuous cultures of Azotobacter vinelandii . Acta. chem. scand 17:2225
    [Google Scholar]
/content/journal/micro/10.1099/00221287-56-3-307
Loading
/content/journal/micro/10.1099/00221287-56-3-307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error