1887

Abstract

SUMMARY

Growth, nitrogen fixation and acetylene reduction by 301 ( 10,071) were increased with sodium lactate, pyruvate, gluconate or succinate as compared with ethanol, a recommended substrate. Yeast extract could be replaced with (NH)SO; in continuous culture a source of fixed nitrogen could be omitted altogether. Growth, nitrogen fixation and acetylene reduction all increased at lowered pO values. Wholly anaerobic conditions did not support growth. Nitrogen fixation was confirmed isotopically.

Cell-free extracts performed the following reductions: N to NH, H+ to H, CH to CH, KCN to CH, CHNC to CH + CH + CH. An ATP-generating system, Mg, NaSO, and anaerobic conditions during preparation and assay of extracts were required. 3·5 mole ATP were hydrolysed to release 1 mole H. Pyruvate, -ketobutyrate, -ketoglutarate, succinate, glucose and glucose-6-phosphate did not replace dithionite. ADP, AMP or high concentrations of ATP inhibited reduction. Activity was associated with a particle which sedimented at 145,000 over 3·1/2 hr. The nitrogenase system of thus resembles the particulate system of Azotobacter, rather than the soluble pyruvate-utilizing system of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-56-2-181
1969-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/56/2/mic-56-2-181.html?itemId=/content/journal/micro/10.1099/00221287-56-2-181&mimeType=html&fmt=ahah

References

  1. Baker K. 1968; Low cost continuous culture apparatus. Lab. Pract 17:817
    [Google Scholar]
  2. Biggins D. R., Postgate J. R. 1969; Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. gen. Microbiol 55:xv
    [Google Scholar]
  3. Bulen W. A., Le Comte J. R. 1966; The nitrogenase system from Azotobacter: two enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc. natn. Acad. SciU.S.A 56979
    [Google Scholar]
  4. Bulen W. A., Burns R. C., Le Comte J. R. 1964; Nitrogen fixation: cell-free system with extracts of Azotobacter . Biochem. biophys. res. Commun 17:265
    [Google Scholar]
  5. Bulen W. A., Burns R. C., Le Comte J. R. 1965; Nitrogen fixation: hydrosulphite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc. natn. Acad. SciU.S.A 53532
    [Google Scholar]
  6. Burns R. C. 1965; ATP-dependent hydrogen evolution by cell-free preparations of Clostridium pasteurianum. In Non-heme Iron Proteins: Role in Energy Conversion San Pietro A. 289 Yellow Springs, Ohio: Antioch Press;
    [Google Scholar]
  7. Burris R. H., Wilson P. W. 1957; Methods for measurement of nitrogen fixation. Meth. Enzym 4:355
    [Google Scholar]
  8. Carnahan J. E., Mortenson L. E., Mower H. F., Castle J. E. 1960; Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim. biophys. Acta 44:520
    [Google Scholar]
  9. Dalton H., Postgate J. R. 1969; Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J. gen. Microbiol 54:463
    [Google Scholar]
  10. Dilworth M. J. 1966; Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. biophys. Acta 127:285
    [Google Scholar]
  11. Dilworth M. J., Subramanian D., Munson T. O., Burris R. H. 1965; The adenosine tri-phosphate requirement for nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim. biophys. Acta 99:486
    [Google Scholar]
  12. Elsworth R., Williams V., Harris-Smith R. 1957; A systematic assessment of dissolved oxygen supply in a 20 litre culture vessel. J. appl. Chem., Lond 7:261
    [Google Scholar]
  13. Fedorov M. V., Kalininskaya T. A. 1959; The nitrogen fixation activity of mixed cultures of oligonitrophilic micro-organisms. Mikrobiologiya 28:343
    [Google Scholar]
  14. Fedorov M. V., Kalininskaya T. A. 1960; Interrelationships between individual species of oligonitrophilic bacteria whichffix molecular nitrogen in mixed cultures. Izv. timiryazev. sel’.-khoz. Akad 2:125
    [Google Scholar]
  15. Fedorov M. V., Kalininskaya T. A. 1961a; New forms of nitrogen-fixing organisms isolated from soddy-podzolic soils. Dokl. mosk. sel’.-khoz. Akad. K.A. Timiryazeva 70:145
    [Google Scholar]
  16. Fedorov M. V., Kalininskaya T. A. 1961b; A new species of a nitrogen-fixing Mycobacterium and its physiological peculiarities. Mikrobiologiya 30:9
    [Google Scholar]
  17. Fedorov M. V., Kalininskaya T. A. 1961c; The relation of the nitrogen-fixing mycobacterium (Mycobacterium sp. 301) to various carbon sources and to additional growth factors. Mikrobiologiya 30:833
    [Google Scholar]
  18. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177:751
    [Google Scholar]
  19. Grau F. H., Wilson P. W. 1961; Cell-free nitrogen fixation by Bacillus polymyxa. Bact. Proc193
    [Google Scholar]
  20. Grau F. H., Wilson P. W. 1962; Physiology of nitrogen fixation by Bacillus polymyxa. J. Bact 83:490
    [Google Scholar]
  21. Grau F. H., Wilson P. W. 1963; Hydrogenase and nitrogenase in cell-free extracts of Bacillus polymyxa. J. Bact 85:446
    [Google Scholar]
  22. Hardy R. W. F., Burns R. C. 1968; Biological nitrogen fixation. A. Rev. Biochem 37:331
    [Google Scholar]
  23. Hardy R. W. F., Knight Jun. E. 1967; ATP-dependent reduction of azide and HCN by N2- fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim. biophys. Acta 139:69
    [Google Scholar]
  24. Hino S., Wilson P. W. 1958; Nitrogen-fixation by a facultative bacillus. J. Bact 75:403
    [Google Scholar]
  25. Il’ina T. K. 1966a; The effect of molybdenum on nitrogen fixation by mycobacteria. Mikrobiologiya 35:155
    [Google Scholar]
  26. Il’ina T. K. 1966b; The effect of copper, cobalt, and other trace elements on the fixation of nitrogen by soil mycobacteria. Mikrobiologiya 35:323
    [Google Scholar]
  27. Il’ina T. K. 1967a; Influence of cobalt on the development of nitrogen-fixing mycobacteria during utilisation of molecular and bound nitrogen. Mikrobiologiya 36:626
    [Google Scholar]
  28. Il’ina T. K. 1967b; Effect of copper on the growth of nitrogen-fixing mycobacteria utilising molecular and bound nitrogen. Mikrobiologiya 36:964
    [Google Scholar]
  29. Il’ina T. K. 1968; A study on a role of molybdenum in hydrogen-donor system of nitrogen-fixing Mycobacteria. Mikrobiologiya 37:217
    [Google Scholar]
  30. Kalininskaya T. A. 1967a; Methods for isolation and study of nitrogen-fixing microbial associations. Mikrobiologiya 36:345
    [Google Scholar]
  31. Kalininskaya T. S. 1967b; Counting of facultative symbiotrophic nitrogen-fixing micro-organisms. Mikrobiologiya 36:526
    [Google Scholar]
  32. Kalininskaya T. A. 1967c; The role of symbiotic microbes in the fixation of nitrogen for free-living micro-organisms. In Biological Nitrogen and its Role in Agriculture Akad. Naiik. S.S.S.R., Inst. Microbiol Moscow: Nauka;
    [Google Scholar]
  33. Kelly M. 1966; Studies on nitrogen fixation by cell-free extracts of Azotobacter chroococcum. IX int. Congr. Microbiol Moscow:277
    [Google Scholar]
  34. Kelly M. 1968a; The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparations from Azotobacter chroococcum and the effects of inhibitors. Biochem. J 107:1
    [Google Scholar]
  35. Kelly M. 1968b; Some properties of purified nitrogenase of Azotobacter chroococcum. Biochim. biophys. Acta 17:9
    [Google Scholar]
  36. Kelly M., Klucas R. V., Burris R. H. 1967; Fractionation and storage of nitrogenase from Azotobacter vinelandii. Biochem. J 105,:3c
    [Google Scholar]
  37. Kelly M., Postgate J. R., Richards R. L. 1967; Reduction of cyanide and ispcyanide by nitrogenase of Azotobacter chroococcum. Biochem. J 102:1c
    [Google Scholar]
  38. L’vov N. P. 1963; New free-living nitrogen-fixing micro-organisms. Izv. Akad. Nauk. S.S.S.R., Ser. Biol 2:270
    [Google Scholar]
  39. Mishustin E. N., Krylova N. B. 1965; Molybdenum requirement of free-living nitrogen-fixing bacteria. Mikrobiologiya 34:683
    [Google Scholar]
  40. Mortenson L. E. 1966; Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and for N2 fixation. Biochim. biophys. Acta 127:18
    [Google Scholar]
  41. Moustafa E., Mortenson L. E. 1967; Acetylene reduction by nitrogen-fixing preparations of Clostridium pasteurianum: ATP requirement and inhibition by ADP. Nature, Lond 216:1241
    [Google Scholar]
  42. Pengra R. M., Wilson P. W. 1958; Physiology of nitrogen fixation by Aerobacter aerogenes. J. Bact 75:21
    [Google Scholar]
  43. Schöllhorn R., Burris R. H. 1966; Study of intermediates in nitrogen fixation. Fedn Proc. Fedn Am. Socs exp. Biol 25710
    [Google Scholar]
  44. Schöllhorn R., Burris R. H. 1967; Acetylene as a competitive inhibitor of N2 fixation. Proc. natn. Acad. SciU.S.A 57213
    [Google Scholar]
  45. Shaw D. H., Pritchard H. O. 1966; The photo-isomerization of gaseous methyl isocyanide. J. phys. Chem., Ithaca 70:1230
    [Google Scholar]
  46. Silver W. S. 1967; Biological nitrogen fixation. Science, N.Y 157:100
    [Google Scholar]
  47. Taussky H. H., Shoor E. 1953; A microcolorimetric method for the determination of inorganic phosphate. J. biol. Chem 202:675
    [Google Scholar]
  48. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric Techniques, 4th. Minneapolis: Burgess;
    [Google Scholar]
  49. Wilson P. W. 1958; Asymbiotic nitrogen fixation. In Handbuch der Pflanzenphysiologie Ruhland W. 9 Berlin: Springer-Verlag;
    [Google Scholar]
  50. Winter H. C., Burris R. H. 1968; Stoichiometry of the adenosine triphosphate requirement for N3 fixation and H2 evolution by a partially purified preparation of Clostridium pasteurianum. J. biol. Chem 243:940
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-56-2-181
Loading
/content/journal/micro/10.1099/00221287-56-2-181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error