1887

Abstract

Summary: The action of the first enzyme in the argmine pathway of strain 13 is controlled by feed-back inhibition and the formation of arginine-synthesizing enzymes is influenced by the concentration of the end-product. Concentrations of arginine below 10 g./ml. induce their formation, but higher concentrations result in repression. The variations in enzyme synthesis caused by changes in the arginine content of the medium are markedly smaller than those observed in . The carbon source affects the response of enzyme synthesis to arginine. Two mutants and which excrete arginine have higher enzyme levels than the wild type. In one of these the enzymes are repressible and in the other mutant the enzymes are de-repressed. The sites of these two mutants map closely in a locus which is linked to a marker but not to any of the structural arginine genes. The de-repression of enzyme synthesis in these mutants is limited and less than in mutants of . The derepressed state of gives it a growth advantage over the wild type if arginine is withdrawn. The derepressed mutants also exhibit a changed response to feedback inhibition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-55-1-89
1969-01-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/55/1/mic-55-1-89.html?itemId=/content/journal/micro/10.1099/00221287-55-1-89&mimeType=html&fmt=ahah

References

  1. Albrecht A. M., Vogel H. J. 1964; Acetylornithine δ-transaminase. Partial purification and repression behaviour. J. biol. Chem 239:1872
    [Google Scholar]
  2. Ames B. N. 1965; Histidine biosynthesis:intermediates, enzymes, genes and control. Symp. Genetics of Micro-organisms. U.S.S.R vii:20
    [Google Scholar]
  3. Ames B. N., Garry B. 1959; Co-ordinate repression of the synthesis of four histidine biosynthetic enzymes by histidine. Proc. natn. Acad. Sci., U.S.A 45:1453
    [Google Scholar]
  4. Baich A., Vogel H. J. 1962; N-Acetyl-γ-glutamokinase and N-acetyl-glutamic-γ-semialdehyde dehydrogenase :Repressible enzymes of arginine synthesis in Escherichia coli . Biochem. biophys. Res. Commun 7:491
    [Google Scholar]
  5. Baumberg S., Bacon D. F., Vogel H. J. 1965; Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc. natn. Acad. Sci., U.S.A 53:1029
    [Google Scholar]
  6. Baumberg S., Bacon D. F., Vogel H. J. 1966; A mutation affecting the repression-derepression behaviour of three out of four enzymes specified by clustered genes of arginine synthesis in Escherichia coli . Genetics 54:322
    [Google Scholar]
  7. Chinard F. P. 1952; Photometric estimation of proline and ornithine. J. biol. Chem 199:91
    [Google Scholar]
  8. Cline A. L., Bock R. M. 1966; Translational control of gene expression. Cold Spring Harb. Symp. quant. Biol 31:321
    [Google Scholar]
  9. Coetzee J. N., Sacks T. G. 1960; Transduction of streptomycin resistance in Proteus mirabilis . J. gen. Microbiol 23:445
    [Google Scholar]
  10. Coetzee J. N., Smit J. A., Prozesky O. W. 1966; Properties of Providence and Proteus morganii transducing phages. J. gen. Microbiol 44:167
    [Google Scholar]
  11. Colby C., Hu A. S. L. 1968; The regulation of the synthesis of β-galactosidase in Proteus mirabilis F-lac . Biochim. biophys. Acta 157:149
    [Google Scholar]
  12. Gemski P., Wohlhieter J. A., Baron L. S. 1967; Chromosome transfer between Escherichia coli Hfr strains and Proteus mirabilis . Proc. natn. Acad. Sci., U.S.A 58:1461
    [Google Scholar]
  13. Glansdorff N. 1965; Topography of co-transducible arginine mutations in Escherichia coli k-12. Genetics 51:167
    [Google Scholar]
  14. Glansdorff N., Sand G. 1965; Coordination of enzyme synthesis in the arginine pathway of Escherichia coli k-12. Biochim. biophys. Acta 108:308
    [Google Scholar]
  15. Goldberg I. D., Keng J. G., Thorne C. B. 1965; Isolation of auxotrophs of Bacillus cereus . J. Bact 89:1441
    [Google Scholar]
  16. Gorini L., Gundersen W. 1961; Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc. natn. Acad. Sci., U.S.A 47:961
    [Google Scholar]
  17. Gorini L., Gundersen W., Burger M. 1961; Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli . Cold Spring Harb. Symp. quant. Biol 26:173
    [Google Scholar]
  18. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177:751
    [Google Scholar]
  19. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis . J. gen. Microbiol 46:47
    [Google Scholar]
  20. Hill L. R. 1966; An index to deoxyribonucleic acid base composition of bacterial species. J. gen. Microbiol 44:419
    [Google Scholar]
  21. Hirschfield I. N., Maas W. K. 1967; Repressibility of the arginine biosynthetic enzymes in arginyl-t-RNA synthetase mutants of E. coli k-12. Fedn. Proc. Fedn. Am. Socs. exp. Biol 26:677
    [Google Scholar]
  22. Jacob F., Ullman A., Monod J. 1964; Le promoteur, élément génétique nécessaire à l’expression d’un opéron. C. r. hebd, Séanc. Acad. Sci., Paris 258:3125
    [Google Scholar]
  23. Jacob F., Perrin D., Sanchez C., Monod J. 1960; L’opéron: groupe de gènes à expression coordonné par un opérateur. C. r. hebd. Seanc. Acad. Sci., Paris 250:1727
    [Google Scholar]
  24. Jacoby G. A., Gorini L. 1967; Genetics of control of the arginine pathway in Escherichia coli b and K. J. molec. Biol 24:41
    [Google Scholar]
  25. Jones M. E. 1962; Carbamyl phosphate synthesis and utilization. Meth. Enzymol 5:903
    [Google Scholar]
  26. Lehrer H. I., Jones M. E. 1962; Repression of ornithine transcarbamyl-transferase of Bacillus subtilis . Biochim. biophys. Acta 65:360
    [Google Scholar]
  27. Maas W. K. 1961; Studies on repression of arginine biosynthesis in Escherichia coli . Cold Spring Harb. Symp. quant. Biol 26:183
    [Google Scholar]
  28. Maas W. K. 1965; Genetic defects affecting an arginine permease and repression of arginine synthesis in Escherichia coli . Fedn. Proc. Fedn. Am. Socs. exp. Biol 24:1239
    [Google Scholar]
  29. Maas W. K., Clark A. J. 1964; Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli II. Dominance of repressibility in diploids. J. molec. Biol 8:365
    [Google Scholar]
  30. Novick R. P., Maas W. K. 1961; Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli . J. Bact 81:236
    [Google Scholar]
  31. Prozesky O. W. 1967; Arginine synthesis in Proteus mirabilis . J. gen. Microbiol 49:325
    [Google Scholar]
  32. Prozesky O. W. 1968; Transductional analysis of arginineless mutants in Proteus mirabilis . J. gen Microbiol
    [Google Scholar]
  33. Prozesky O. W., Coetzee J. N. 1966; Linked transduction in Proteus mirabilis . Nature; Lond: 2091262
    [Google Scholar]
  34. Prozesky O. W., de Klerk H. C., Coetzee J. N. 1965; The morphology of Proteus bacteriophages. J. gen. Microbiol 41:29
    [Google Scholar]
  35. Ramaley R. F., Bernlohr R. W. 1965; Apparent induction of ornithine transcarbamylase and arginase by arginine in Bacillus licheniformis . J. molec. Biol 11:842
    [Google Scholar]
  36. Ratner S. 1955; Enzymatic synthesis of arginine (condensing and splitting enzymes). Meth. Enzymol a:356
    [Google Scholar]
  37. Sand G., Glansdorff N. 1967; L’opéron arginine d’Escherichia coli . Arch. int. Physiol. Biochim 75:568
    [Google Scholar]
  38. Sercarz E. E., Gorini L. 1964; Different contribution of exogenous and endogenous arginine to repressor formation. J. molec. Biol 8:254
    [Google Scholar]
  39. Somerville R. L., Yanofsky C. 1965; Studies on the regulation of tryptophan biosynthesis in Escherichia coli . J. molec. Biol 11:747
    [Google Scholar]
  40. Udaka S. 1966; Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bact 91:617
    [Google Scholar]
  41. Udaka S., Kinoshita S. 1958; Studies on l-omithine fermentation. I. The biosynthetic pathway of l-omithine in Micrococcus glutamicus . J. gen. appl. Microbiol 4:272
    [Google Scholar]
  42. Vogel H. J. 1957; Repression and induction as control mechanisms of enzyme biogenesis: The adaptive formation of acetylomithinase. In The Chemical Basis of Heredity McElroy W. D., Glass H. B. ed. by p. 276 Baltimore: Johns Hopkins Press;
    [Google Scholar]
  43. Vogel H. J. 1961; Aspects of repression in the regulation of enzyme synthesis: Pathway-wide control and enzyme-specific response. Cold Spring Harb. Symp. quant. Biol 26:163
    [Google Scholar]
  44. Vogel H. J., Bonner M. 1956; Acetylomithinase of Escherichia coli: Partial purification and some properties. J. biol. Chem 218:97
    [Google Scholar]
  45. Vogel H. J., Vogel R. H. 1967; Regulation of protein synthesis. A. Rev. Biochem 36:519
    [Google Scholar]
  46. Vogel H. J., Albrecht A. M., Cocito C. 1961; Induction by an enzyme repressor in ‘non-repressible strains’. Biochem. biophys. Res. Commun 5:115
    [Google Scholar]
  47. Vogel H. J., Bacon D. F., Baich A. 1963; Induction of acetylomithine-5-transaminase during pathway-wide repression. In Informational Macromolecules Vogel H. J., Bryson V., Lampen J. O. ed. by p. 293 New York: Academic Press;
    [Google Scholar]
  48. Vogel R. H., Vogel H. J. 1963; Acetylated intermediates of arginine synthesis in Bacillus subtilis . Biochim. biophys. Acta 69:174
    [Google Scholar]
  49. Vyas S., Maas W. K. 1963; Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli . Archs. Biochem. biophys 100:542
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-55-1-89
Loading
/content/journal/micro/10.1099/00221287-55-1-89
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error