1887

Abstract

SUMMARY: Eight polyols were employed in turn as sole carbon source for aerobic growth tests with sixteen yeasts. The yeasts studied varied from those using none to others using all the polyols. Mean generation times in aerated, liquid, shaken medium for five yeasts and four polyols, were from 2 to 7.5 hr.

With seven yeasts, oxygen uptake was measured for different polyols as sole carbon source, of washed, starved yeast cells, harvested in the exponential phase of growth. No yeast respired a substrate on which it did not grow, or vice versa. Except when glucose, erythritol or galactitol (dulcitol) were employed, respiration rates were not greatly affected by the carbon source for growth.

Coenzyme-linked polyol dehydrogenase activity was measured with crude cell-free extracts of four yeasts and several polyols or sugars. The enzymes had a low affinity for their substrates. In certain cases the polyol oxidation products were examined chromatographically.

The polyol dehydrogenases of four yeasts were separated from crude cell extracts by gel electrophoresis, and detected on the gels by their activity with different polyols, and with NAD+ or NADP+. One strain of appears to synthesize at least eight polyol dehydrogenases which differ in their specificity for polyols, coenzyme or inducer. Similarly, four polyol dehydrogenases were found in a strain of . Most of these enzymes were inducible.

There was no evidence that phosphorylation was the first step in polyol catabolism.

From experiments with C-labelled polyols, it seems that and do not utilize D-glucitol (sorbitol) or D-mannitol because these substrates do not enter the yeast cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-52-1-131
1968-06-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/52/1/mic-52-1-131.html?itemId=/content/journal/micro/10.1099/00221287-52-1-131&mimeType=html&fmt=ahah

References

  1. Arcus A. C., Edson N. L. 1956; Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis . Biochem. J 64:385
    [Google Scholar]
  2. Barnett J. A. 1968; Biochemical differentiation of taxa.. The Fungi Ed. by Ainsworth G. C., Sussman A. S. III New York: Academic Press.;
    [Google Scholar]
  3. Barnett J. A., Ingram M. 1955; Technique in the study of yeast assimilation reactions.. J. appl. Bact 18:131
    [Google Scholar]
  4. Barnett J. A., Kornberg H. L. 1960; The utilization by yeasts of acids of the tricarboxylic acid cycle.. J. gen. Microbiol 23:65
    [Google Scholar]
  5. Beech F. W. 1965; Pichia delftensis sp.n.. Antonie van Leeuwenhoek 31:81
    [Google Scholar]
  6. Beutler E. 1968; ‘Galactose dehydrogenase’, ‘nothing dehydrogenase’, and alcohol dehydrogenase: interrelation.. Science N.Y. 156:1516
    [Google Scholar]
  7. Burger M., Kleinzeller A. 1959; Transport of some mono- and di-saccharides into yeast cells.. Biochem. J 71:233
    [Google Scholar]
  8. Bygrave F. L., Shaw D. R. D. 1961; Separation of the polyol dehydrogenases of Acetobacter suboxydans.. Proc. Unix. Otago med. Sch 39:15
    [Google Scholar]
  9. Chakravorty M., Horecker B. L. 1966; Polyol dehydrogenases of Candida utilis I. DPN-linked dehydrogenase.. Meth. Enzymol 9:163
    [Google Scholar]
  10. Chakravorty M., Veiga L. A., Bacila M., Horecker B. L. 1962; Pentose metabolism in Candida. II. The diphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis . J. biol. Chem 237:1014
    [Google Scholar]
  11. Cirillo V. P. 1961; Sugar transport in micro-organisms.. A. Rev. Microbiol 15:197
    [Google Scholar]
  12. Cirillo V. P., Wilkins P. O. 1964; Use of uranyl ion in membrane transport studies.. J. Bact 87:232
    [Google Scholar]
  13. Datta S. P., Gryzbowski A. K. 1961; pH and acid-base equilibria.. Biochemist’s Handbook Ed. by Long C. 22 London: Spon.:
    [Google Scholar]
  14. Davies R. 1964; Lactose utilization and hydrolysis in Saccharomyces fragilis . J. gen. Microbiol 37:81
    [Google Scholar]
  15. Dische Z., Borenfreund E. 1951; A new spectrophotometric method for the detection and determination of keto sugars and trioses.. J. biol. Chem 192:583
    [Google Scholar]
  16. Dische Devi A. 1960; A new colorimetric method for the determination of ketohexoses in presence of aldoses, ketoheptoses and ketopentoses.. Biochim. biophys. Acta 39:140
    [Google Scholar]
  17. Dixon M., Webb E. C. 1964 Enzymes 2nd ed. London: Longmans Green.;
    [Google Scholar]
  18. Edson N. L. 1953; The metabolism of the sugar alcohols.. Aust. N.Z. Ass. Adv. Sci., Rep. 29th Meeting, Sydney 1952 29:281
    [Google Scholar]
  19. Fine I. H., Costello L. A. 1963; The use of starch electrophoresis in dehydrogenase studies.. Meth. Enzymol 6:958
    [Google Scholar]
  20. Fossitt D., Mortlock R. P., Anderson R. L., Wood W. A. 1964; Pathways of L-arabitol and xylitol metabolism in Aerobacter aerogenes . J. biol. Chem 239:2110
    [Google Scholar]
  21. Gomori G. 1955; Preparation of buffers for use in enzyme studies.. Meth. Enzymol 1:138
    [Google Scholar]
  22. Gordon H. T., Thornburg W., Werum L. N. 1956; Rapid paper chromatography of carbohydrates and related compounds.. Analyt. Chem 28:849
    [Google Scholar]
  23. Harris G., Thompson C. C. 1961; The uptake of nutrients by yeasts III. The maltose permease of a brewing yeast.. Biochim. biophys. Acta 52:176
    [Google Scholar]
  24. Hayward L. D., Wright I. G. 1963; Xylitol pentanitrate.. Meth. Carbohydrate Chem 2:258
    [Google Scholar]
  25. Hollmann S., Touster O. 1964 Non-Glycolytic Pathways of Metabolism of Glucose New York: Academic Press.;
    [Google Scholar]
  26. Horecker B. L. 1961; Alternative pathways of carbohydrate metabolism in relation to evolutionary development.. Int. Congr. Biochem 3:86
    [Google Scholar]
  27. Horecker B. L. 1962a Pentose Metabolism in Bacteria New York: Wiley.;
    [Google Scholar]
  28. Horecker B. L. 1962b; Interdependent pathways of carbohydrate metabolism.. Harvey Lect 57:35
    [Google Scholar]
  29. Kay D., Fildes P. 1950; The calcium requirement of a typhoid bacteriophage.. Br. J. exp. Path 31:338
    [Google Scholar]
  30. Kersters K., Wood W. A., DeLey J. 1965; Polyol dehydrogenases of Gluconobader oxydans . J. biol. Chem 240:965
    [Google Scholar]
  31. Kirsop B. 1954; The National Collection of Yeast Cultures.. J. Inst. Brew 60:210
    [Google Scholar]
  32. Kotyk A., Höfer M. 1965; Uphill transport of sugars in the yeast Rhodotorulla gracilis.. Biochim. biophys. Acta 102:410
    [Google Scholar]
  33. Kotyk A., Kleinzeller A. 1963; Transport of d-xylose and sugar space in baker’s yeast.. Folia microbiol 8:156
    [Google Scholar]
  34. Kreger-van RIJ N. J. W. 1964 A Taxonomic Study of the Yeast Genera Endomycopsis, Pichia and Debaryomyces Thesis: University of Leiden.;
    [Google Scholar]
  35. Kudriavzev V. I. 1954 The Systematics of Yeasts. Moscow: Academy of Sciences. (In Russian.) Translated edition: Kudrjawzew, W. I. (1960), Die Systematik der Hefen. Berlin: Akademie-Verlag.;
    [Google Scholar]
  36. Layne E. 1957; Spectrophotometric and turbidimetric methods for measuring proteins.. Meth. Enzymol 3:447
    [Google Scholar]
  37. Lewis D. H., Smith D. C. 1967a; Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism.. New Phytol 66:143
    [Google Scholar]
  38. Lewis D. H., Smith D. C. 1967b; Sugar alcohols (polyols) in fungi and green plants II. Methods of detection and quantitative estimation in plant extracts.. New Phytol 66:185
    [Google Scholar]
  39. Lodder J., Kreger-van Rij N. J. W. 1952 The Yeasts. A Taxonomic Study Amsterdam: North Holland Publishing Co.;
    [Google Scholar]
  40. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent.. J. biol. Chem 193:265
    [Google Scholar]
  41. Lund B. M. 1965; A comparison by the use of gel electrophoresis of soluble protein components and esterase enzymes of some Group D Streptococci.. J. gen. Microbiol 40:413
    [Google Scholar]
  42. Macquillan A. M., Halvorson H. O. 1962; Physiological changes occurring in yeast undergoing glucose repression.. J. Bact 84:31
    [Google Scholar]
  43. Magasanik B. 1957; Nutrition of bacteria and fungi. A. Rev. Microbiol 11:221
    [Google Scholar]
  44. Mitchell P. 1949; A new technique for stirred aerated culture.. Nature, Lond 164:846
    [Google Scholar]
  45. Mortlock R. P., Wood W. A. 1964; Metabolism of pentoses and pentitols by Aerobacter aerogenes. I. Demonstration of pentose isomerase, pentulokinase and pentitol dehydrogenase enzyme families.. J. Bact 88:838
    [Google Scholar]
  46. Nossal P. M. 1953; A mechanical cell disintegrator.. Aust. J. exp. Biol. med. Sci 31:583
    [Google Scholar]
  47. Palleroni N. J., Doudoroff M. 1956; Mannose isomerase of Pseudomonas saccharophila.. J. biol. Chem 218:535
    [Google Scholar]
  48. Poncet S., Arpin M. 1965; Les Candida sans pouvoir fermentaire (Cryptococcacées).. Antonie van Leeuwenhoek 31:433
    [Google Scholar]
  49. Poulik M. D. 1957; Starch-gel electrophoresis in a discontinuous system of buffers.. Nature, Lond 180:1477
    [Google Scholar]
  50. Price V. E., Levintow L. 1952; Sodium pyruvate.. Biochemical Preparations. Ed. by Ball E. G. II22 New York: Wiley.;
    [Google Scholar]
  51. Raymond S. 1964; Acrylamide gel electrophoresis.. Ann. N.Y. Acad. Sci 121:350
    [Google Scholar]
  52. Scher B. M., Horecker B. L. 1966a; Pentose metabolism in Candida III. The triphosphopyri-dine nucleotide-specific polyol dehydrogenase of Candida utilis.. Archs Biochem. Biophys 116:117
    [Google Scholar]
  53. Scher B. M., Horecker B. L. 1966b; Polyol dehydrogenases of Candida utilis. II. TPN-linked dehydrogenase.. Meth. Enzymol 9:166
    [Google Scholar]
  54. Schmidt O. T., Treiber R. 1933; d-Xyloketose.. Chem. Ber 66:1765
    [Google Scholar]
  55. Scopes R. K. 1963; Starch-gel electrophoresis of pig serum proteins.. Nature, Lond 197:1201
    [Google Scholar]
  56. Scopes R. K. 1964; The influence of post-mortem conditions on the solubilities of muscle proteins.. Biochem. J 91:201
    [Google Scholar]
  57. Shaw C. R., Koen A. L. 1965; On the identity of ‘nothing dehydrogenase’.. J. Histochem. Cyto-chem 13:431
    [Google Scholar]
  58. Shaw D. R. D. 1956; Polyol dehydrogenases. 3. Galactitol dehydrogenase and d-iditol dehydrogenase.. Biochem. J 64:394
    [Google Scholar]
  59. Shaw D. R. D. 1962; Galactitol dehydrogenase.. Meth. Enzymol 5:323
    [Google Scholar]
  60. Slein M. W. 1962; Xylose isomerase.. Meth. Enzymol 5:347
    [Google Scholar]
  61. Smith M. G. 1962; Polyol dehydrogenases. 4. Crystallization of the l-iditol dehydrogenase of sheep liver.. Biochem. J 83:135
    [Google Scholar]
  62. Smithies O. 1959; An improved procedure for starch-gel electrophoresis: further variations in the serum proteins of normal individuals.. Biochem. J 71:585
    [Google Scholar]
  63. Strain H. H. 1934; d-Sorbitol: a new source, method of isolation, properties and derivatives.. J. Am. chem. Soc 56:1756
    [Google Scholar]
  64. Strain H. H. 1937; Sources of d-sorbitol.. J. Am. chem. Soc 59:2264
    [Google Scholar]
  65. Tombs M. P. 1965; The interpretation of gel electrophoresis.. Analyt. Biochem 13:121
    [Google Scholar]
  66. Topley & Wilson’s Principles of Bacteriology and Immunology 1964 5th ed. Revised by Wilson G. S., Miles A. A. 1 London: Arnold.;
  67. Touster O., Shaw D. R. D. 1962; Biochemistry of the acyclic polyols.. Physiol. Rev 42:181
    [Google Scholar]
  68. Veiga L. A., Bacila M., Horecker B. L. 1960; Pentose metabolism in Candida albicans. I. The reduction of d-xylose and l-arabinose.. Biochem. biophys. Res. Commun 2:440
    [Google Scholar]
  69. Wickerham L. J. 1951; Taxonomy of yeasts.. Tech. Bull. U.S. Dep. Agric. no. 1029.
    [Google Scholar]
  70. Wickerham L. J., Burton K. A. 1948; Carbon assimilation tests for the classification of yeasts.. J. Bact 56:363
    [Google Scholar]
  71. Wolff J. B., Kaplan N. O. 1956; D-Mannitol 1-phosphate dehydrogenase from Escherichia coli.. J. biol. Chem 218:849
    [Google Scholar]
  72. Wolfrom M. L., Thompson A. 1963; Reduction with sodium borohydride.. Meth. Carbohydrate Chem 2:65
    [Google Scholar]
/content/journal/micro/10.1099/00221287-52-1-131
Loading
/content/journal/micro/10.1099/00221287-52-1-131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error