1887

Abstract

SUMMARY: Low concentrations of fatty acids with less than 14 carbon atoms were oxidized without a lag phase over a wide range of pH values by mycelium of The effect of the fatty acids upon oxygen uptake by a given weight of mycelium, and the nature of the products of oxidation, were dependent upon the concentration and chain length of the fatty acid and the pH value of the system. The C-C fatty acids which showed the greatest inhibitory effect were not oxidized to the corresponding methyl ketone with one less carbon atom in such high yields as the less toxic C-C acids. The C-C fatty acids markedly inhibited endogenous respiration at low pH values but this inhibition was reversed by increasing the pH value. The toxic effect associated with some fatty acids was less pronounced against mycelium which had been previously shaken over an extended period in phosphate buffer. It is suggested that the cellular regulation of fatty acid oxidation and methyl ketone formation involves deacylation of β-oxo acyl thiolester which provides an alternative means of recycling coenzyme A when oxidation of acetyl CoA is impaired.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-51-2-289
1968-04-01
2022-05-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/51/2/mic-51-2-289.html?itemId=/content/journal/micro/10.1099/00221287-51-2-289&mimeType=html&fmt=ahah

References

  1. Blumenthal H. J. 1963; Endogenous metabolism of filamentous fungi. Ann. N. Y. Acad. Sci 102:688
    [Google Scholar]
  2. Bu’Lock J. D., Powell A. J. 1965; Secondary metabolism: an explanation in terms of induced enzyme mechanisms. Experientia 21:55
    [Google Scholar]
  3. Bu’Lock J. D., Hamilton D., Hulme M. A., Powell A. J., Smalley H. M., Shepherd D., Smith G. N. 1965; Metabolic development and secondary biosynthesis in Penicillium urticae. Can. J. Microbiol 11:765
    [Google Scholar]
  4. Cochrane V. W. 1958 Physiology of Fungi New York: John Wiley and Sons;
    [Google Scholar]
  5. Dixon M. 1951 Manometric Methods Cambridge University Press;
    [Google Scholar]
  6. Franke W., Heinen W. 1958; Zur Kenntnis des Fettsäureabbaus durch Schimmelpilze. 1. Über die Methylketonbildung durch Schimmelpilze. Arch. Mikrobiol 31:50
    [Google Scholar]
  7. Gehrig R. F., Knight S. G. 1958; Formation of ketones from fatty acids by spores of Penicillium roqueforti. Nature, Lond 182:1937
    [Google Scholar]
  8. Gehrig R. F., Knight S. G. 1961; Formation of 2-heptanone from caprylic acid by spores of various filamentous fungi. Nature, Lond 192:1185
    [Google Scholar]
  9. Gehrig R. F., Knight S. G. 1963; Fatty acid oxidation by spores of Penicillium roqueforti. Appl. Microbiol 11:166
    [Google Scholar]
  10. Girolami R. L., Knight S. G. 1955; Fatty acid oxidation by Penicillium roqueforti. Appl. Microbiol 3:264
    [Google Scholar]
  11. Hammer B. W., Bryant H. W. 1937; A flavor constituent of blue cheese (Roquefort type). Iowa State Coll. J. Sci 11:281
    [Google Scholar]
  12. Hatch M. D., Stumpf P. K. 1962; Metabolism of malonic acid and its α-substituted derivatives in plants. Pl. Physiol 37:121
    [Google Scholar]
  13. Katz J., Chaikoff I. L. 1955; Synthesis via the Krebs’ cycle in the utilisation of acetate by rat liver slices. Biochim. biophys. Acta 18:27
    [Google Scholar]
  14. Lawrence R. C. 1965a; Use of 2,4-dinitrophenylhydrazine for the estimation of micro amounts of carbonyls. Nature, Lond 205:1313
    [Google Scholar]
  15. Lawrence R. C. 1965b; Activation of spores of Penicillium roqueforti. Nature, Lond 208:801
    [Google Scholar]
  16. Lawrence R. C. 1966; The oxidation of fatty acids by spores of Penicillium roqueforti. J. gen. Microbiol 44:393
    [Google Scholar]
  17. Metcalf L. D. 1960; Gas chromatography of unesterified fatty acids using polyester columns treated with phosphoric acid. Nature, Lond 188:142
    [Google Scholar]
  18. Meyers E., Knight S. G. 1958; Studies on the nutrition of Penicillium roqueforti. Appl. Microbiol 6:174
    [Google Scholar]
  19. Neal A. L., Weinstock J. O., Lampen J. O. 1965; Mechanisms of fatty acid toxicity for yeast. J. Bact 60:126
    [Google Scholar]
  20. Reid E. E., Ruhoff J. R. In Organic Synthesis Ed. by Blatt H. A. Vol. 2 New York: John Wiley & Sons;
    [Google Scholar]
  21. Rolinson G. N. 1954; The effect of saturated fatty acids on oxygen uptake by Penicillium chrysogenum. J. appl. Bact 17:190
    [Google Scholar]
  22. Starkle M. 1924; Die Methylketone im oxydativen Abbau einiger Triglyceride (bzw. Fettsäuren) durch Schimmelpilze unter Berücksichtigung der besonderen Ranzidität des Kokofettes. I. Die Bedeutung der Methylketone im Biochemismus der Butterranzidität. II. Über die Entstchung und Bedeutung der Methylketone als Aromastoffe im Roquefortkäse. Biochem. Z 151:371
    [Google Scholar]
  23. Stokoe W. N. 1928; The rancidity of coconut oil produced by mould action. Biochem J 22:80
    [Google Scholar]
  24. Thaler H., Geist G. 1939; Zur Chemie der Ketonranzigkeit; über die Bildung von Methyl-ketonen aus Fettsäuren durch Penicillium glaucum. Biochem. Z 302:121
    [Google Scholar]
  25. Vinze V. L., Ghosh D. 1962; Oxidative metabolism of P. chrysogenum. II. Oxidation of fatty acids. Hindustan Antiobiotics Bull 4:119
    [Google Scholar]
  26. Whitmore F. C., Otterbacher T. 1944 Organic Syntheses Ed. by Blatt H. A. vol. 2 p. 317 New York: John Wiley and Sons;
    [Google Scholar]
  27. Young R. H., Shannon L. M. 1959; Malonate as a participant in the metabolism of bush bean leaves. Pl. Physiol 34:149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-51-2-289
Loading
/content/journal/micro/10.1099/00221287-51-2-289
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error