1887

Abstract

SUMMARY

A mesophilic strain of , grown at 30° and suspended to a concentration of equiv. 0·02 mg. dry wt/ml. in 30 m-NaCl, showed rapid loss of viability when chilled rapidly from 30° to 0° or –2°. The viability of a psychrophilic pseudomonad, grown at 30°, did not decrease to the same extent when a dilute suspension (equiv. 0·02 mg. dry wt/ml.) was rapidly chilled from 30° to 0° or –2°. Concentrated suspensions (equiv. 3·0 mg. dry wt/ml.) of both the mesophile and the psychrophile released about the same proportion of total endogenous ultraviolet-absorbing compounds when rapidly chilled from 30° to 5°, 0° or –2°. Loss of viability following rapid chilling of a dilute suspension of the mesophile or the psychrophile was partly or completely prevented by 5 m-Mg and by bacteria-free filtrates from chilled concentrated suspensions of either bacterium. The viability of the bacteria grown at 10° did not decrease when dilute suspensions were rapidly chilled from 10° to –2°. Bacteria grown at 10° contained a greater proportion of unsaturated fatty acids than bacteria grown at 30°. Fatty acid analyses showed that susceptibility of the mesophile and psychrophile to cold shock could be correlated with the contents of unsaturated fatty acids in their lipids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-50-3-429
1968-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/50/3/mic-50-3-429.html?itemId=/content/journal/micro/10.1099/00221287-50-3-429&mimeType=html&fmt=ahah

References

  1. Byrne P., Chapman D. 1964; Liquid crystalline nature of phospholipids. Nature, Lond 202:987
    [Google Scholar]
  2. Farrell J., Rose A. H. 1967a; Temperature effects on micro-organisms. In Thermobiology Rose A. H. 142 London: Academic Press Inc;
    [Google Scholar]
  3. Farrell J., Rose A. H. 1967b; Temperature effects on micro-organisms. A. rev. Microbiol 21:101
    [Google Scholar]
  4. Gorrill R. H., McNeil E. M. 1960; The effect of cold diluent on the viable count of Pseudo-monas pyocyanea. J. gen. Microbiol 22:437
    [Google Scholar]
  5. Hagen P.-O., Rose A. H. 1962; Studies on the biochemical basis of the low maximum temperature in a psychrophilic cryptococcus. J. gen. Microbiol 27:89
    [Google Scholar]
  6. Hegarty C. P., Weeks O. B. 1940; Sensitivity of Escherichia coli to cold shock during the logarithmic growth phase. J. Bad 39:475
    [Google Scholar]
  7. Houghtby G., Liston J. 1965; Lethal cold shock of Escherichia coli k-12. BactProc19
    [Google Scholar]
  8. James A. T., Martin A. J. P. 1956; Gas-liquid chromatography: the separation and identification of the methyl esters of saturated and unsaturated acids from formic acid to n-octadecanoic acid. Biochem. J 63:144
    [Google Scholar]
  9. Kates M. 1964a; Simplified procedures for the hydrolysis or methanolysis of lipids. J. lipid Res 5:132
    [Google Scholar]
  10. Kates M. 1964b; Bacterial lipids. Advanc. lipid Res 2:17
    [Google Scholar]
  11. Kates M., Baxter R. M. 1962; Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can. J. Biochem. Physiol 40:1213
    [Google Scholar]
  12. Luzzati B. P., Husson F. 1962; The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol 12:207
    [Google Scholar]
  13. Meynell G. G. 1958; The effect of sudden chilling on Escherichia coli. J. gen. Microbiol 19:380
    [Google Scholar]
  14. Northam B. E., Norris F. W. 1951; Growth requirements of Schizosaccharomyces octosporus, a yeast exacting towards adenine. J. gen. Microbiol 5:502
    [Google Scholar]
  15. Piperno J. R., Oxender D. L. 1966; Amino acid-binding protein released from Escherichia coli by osmotic shock. J. biol. Chem 241:5732
    [Google Scholar]
  16. Postgate J. R., Crumpton J. E., Hunter J. R. 1961; The measurement of bacterial viabilities by slide culture. J. gen. Microbiol 24:15
    [Google Scholar]
  17. Ring K. 1965a; Der Einfluss der Adaptationstemperatur auf die Kaltestabilitat der Zellmembran von Streptomyces hydrogenans. Biochim. biophys. Acta 94:598
    [Google Scholar]
  18. Ring K. 1965b; The effect of low temperature on permeability in Streptomyces hydrogenans. Biochem. biophys. res. Commun 19:576
    [Google Scholar]
  19. Rose A. H., Ilahi M., Kelemen M. V. 1965; Studies on the biosynthesis of biotin. Production of biotin and biotin-like compounds by a pseudomonad. Biochem. J 96:319
    [Google Scholar]
  20. Sherman J. M., Albus W. R. 1923; Physiological youth in bacteria. J. Bad 8:127
    [Google Scholar]
  21. Smith A. M., Agiza A. H. 1957; The determination of amino acids colorimetrically by the nin- hydrin reaction. Analyst 76:623
    [Google Scholar]
  22. Stoffel W., Chu F., Ahrens E. H. Jun. 1959; Analysis of long-chain fatty acids by gas-liquid chromatography. Micromethod for preparation of methyl esters. Analyt. Chem 31:307
    [Google Scholar]
  23. Strange R. E., Dark F. A. 1962; Effect of chilling on Aerobacter aerogenes in aqueous suspension. J. gen. Microbiol 29:719
    [Google Scholar]
  24. Strange R. E., Ness A. G. 1963; Effect of chilling on bacteria in aqueous suspension. Nature, Lond 197:819
    [Google Scholar]
  25. Trevelyan W. E. 1966; Determination of some lipid constituents of baker’s yeast. J. Inst. Brew 72:184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-50-3-429
Loading
/content/journal/micro/10.1099/00221287-50-3-429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error