1887

Abstract

SUMMARY

The survival characteristics of washed 3 organisms, suspended in phosphate buffer, have been examined at the growth temperature. Mg markedly prolonged survival. High bacterial concentrations extended survival times, probably because Mg was excreted by the bacteria. Surviving organisms in some conditions showed prolonged division lags, especially in the absence of Mg. Salt concentration had little effect on survival within wide limits; the optimum pH value for survival was near 7·0. Survival times increased considerably at lower temperatures. Agitation and aeration tended to decrease survival. Death was not influenced by the phase of growth at which cells were harvested from a lactose-limiting medium. Casamino acids increased survival markedly in the presence of Mg; arginine was almost as effective as the complete mixture of amino acids while other individual amino acids tested gave only slight increases in survival times. Fermentable carbohydrates accelerated death of starving organisms irrespective of the growth phase from which they were harvested and of the limiting nutrient; the accelerated death was reduced by addition of Mg.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-50-3-367
1968-03-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/50/3/mic-50-3-367.html?itemId=/content/journal/micro/10.1099/00221287-50-3-367&mimeType=html&fmt=ahah

References

  1. Abelson P. H., Aldous E. 1950; Ion antagonisms in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc and manganese. J. Bact 60:401
    [Google Scholar]
  2. Allan J. E. 1961; The determination of copper by atomic absorption spectrophotometry. Spectrochim. Acta 17:459
    [Google Scholar]
  3. Asbell M. A., Eagon R. G. 1966; Role of multivalent cations in the organization, structure, and assembly of the cell wall of Pseudomonas aeruginosa. J. Bact 92:380
    [Google Scholar]
  4. Barker S. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological material. J. biol. Chem 138:535
    [Google Scholar]
  5. Bowen T. J., Dagley S., Sykes J. 1959; A ribonucleo-protein component of Escherichia coli. Biochem. J 72:419
    [Google Scholar]
  6. Clifton C. E. 1966; Ageing of Escherichia coli. J. Bact 92:905
    [Google Scholar]
  7. Cowell G. R., Koburger J. A., Weese S. J. 1966; Storage of lactic streptococci. 1. Effect of pH on survival and endogenous metabolism in phosphate buffer. J. Dairy Sci 49:1
    [Google Scholar]
  8. Cruickshank R. 1965 In Medical Microbiology, 11.869 London: E. and S. Livingstone Ltd;
    [Google Scholar]
  9. Gibson C. A., Landerkin G. B., Morse P. M. 1965; Survival of strains of lactic streptococci during frozen storage. J. Dairy Res 32:151
    [Google Scholar]
  10. Gibson C. A., Landerkin G. B., Morse P. M. 1966; Effects of additives on the survival of lactic streptococci in frozen storage. Appl. Microbiol 14:665
    [Google Scholar]
  11. Gray G. W., Wilkinson S. G. 1965; The effect of ethylenediaminetetra-acetic acid on the cell walls of some Gram-negative bacteria. J. gen. Microbiol 39:385
    [Google Scholar]
  12. Harrison A. P. Jun. 1960; The response of Bacterium lactis aerogenes when held at growth temperature in the absence of nutriment: an analysis of survival curves. Proc. R. Soc. B 152418
    [Google Scholar]
  13. Harvey R. J. 1965; Damage to Streptococcus lactis resulting from growth at low pH. J. Bact 90:1330
    [Google Scholar]
  14. Korzenovsky M., Werkman C. H. 1953; Conversion of citrulline to ornithine by cell free extracts of Streptococcus lactis. Archs Biochem. Biophys 46:174
    [Google Scholar]
  15. Korzenovsky M., Werkman C. H. 1954; Stoichiometry of the citrulline phosphorylase reaction of Streptococcus lactis. Biochem. J 53:343
    [Google Scholar]
  16. Lamprech E. D., Foster E. M. 1963; The survival of starter organisms in concentrated suspensions. J. appl. Bact 26:359
    [Google Scholar]
  17. MacLeod R. A., Snell E. E. 1950; The relation of ion antagonism to the inorganic nutrition of lactic acid bacteria. J. Bact 59:783
    [Google Scholar]
  18. McGrew S. B., Mallette M. F. 1962; Energy of maintenance in Escherichia coli. J. Bact 83:844
    [Google Scholar]
  19. McGrew S. B., Mallette M. F. 1965; Maintenance of Escherichia coli and the assimilation of glucose. Nature, Lond 208:1096
    [Google Scholar]
  20. Norris K. P., Powell E. O. 1961; Improvements in determining total counts of bacteria. Jl R. microsc. Soc 80:107
    [Google Scholar]
  21. Perrin D. D. 1964 In Organic Complexing Reagents100 New York: Interscience;
    [Google Scholar]
  22. Postgate J. R., Crumpton J. E., Hunter J. R. 1961; The measurement of bacterial viabilities by slide culture. J. gen. Microbiol 24:15
    [Google Scholar]
  23. Postgate J. R., Hunter J. R. 1962; The survival of starved bacteria. J. gen. Microbiol 29:233
    [Google Scholar]
  24. Postgate J. R., Hunter J. R. 1963a; The survival of starved bacteria. J. appl. Bact 26:295
    [Google Scholar]
  25. Postgate J. R., Hunter J. R. 1963b; Acceleration of bacterial death by growth substrates. Nature, Lond 198:273
    [Google Scholar]
  26. Postgate J. R., Hunter J. R. 1964; Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J. gen. Microbiol 34:459
    [Google Scholar]
  27. Richards E. L. 1959; The reaction of lactose with anthrone and its application to the estimation of lactose in casein and other dairy products. J. Dairy Res 26:53
    [Google Scholar]
  28. Strange R. E., Dark F. A. 1965; ‘Substrate-accelerated death’ of Aerobacter aerogenes. J. gen. Microbiol 39:215
    [Google Scholar]
  29. Strange R. E., Hunter J. R. 1966; ‘Substrate-accelerated death’ of nitrogen-limited bacteria. J. gen. Microbiol 44:255
    [Google Scholar]
  30. Strange R. E., Dark F. A., Ness A. G. 1961; The survival of stationary phase Aerobacter aerogenes stored in aqueous suspension. J. gen. Microbiol 25:61
    [Google Scholar]
  31. Tempest D. W., Dicks J. W., Hunter J. R. 1966; The interrelationship between potassium, magnesium and phosphorus in potassium-limited chemostat cultures of Aerobacter aerogenes. J. gen. Microbiol 45:135
    [Google Scholar]
  32. Wade H. E. 1961; The autodegradation of ribonucleoprotein in Escherichia coli. Biochem. J 78:457
    [Google Scholar]
  33. Walker D. J., Forrest W. W. 1964; Anaerobic endogenous metabolism in Streptococcus faecalis. J. Bact 87:256
    [Google Scholar]
  34. Webb M. 1966; The utilization of magnesium by certain Gram-positive and Gram-negative bacteria. J. gen. Microbiol 43:401
    [Google Scholar]
  35. Whitehead H. R., Briggs C. A. E., Garvte E. I., Newland L. G. M. 1956; The influence of cultural conditions on the characteristics of Streptococcus cremoris strain HP. J. Dairy Res 23:315
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-50-3-367
Loading
/content/journal/micro/10.1099/00221287-50-3-367
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error